ON THE MULTIPLICITY OF $\mathbf{T} \oplus \mathbf{T} \oplus \cdots \oplus \mathbf{T}$

DOMINGO A. HERRERO AND WARREN R. WOGEN

To the memory of our friends and colleagues
Constantin Apostol and Doug McMahon

1. Introduction. Let $\mathcal{L}(\mathcal{X})$ denote the algebra of all (bounded linear) operators on a complex Banach space \mathcal{X}. The multiplicity of $T \in \mathcal{L}(\mathcal{X})$ is the cardinal number defined by

$$
\mu(T)=\min _{\Gamma \subset \mathcal{X}}\left\{\operatorname{card} \Gamma: \mathcal{X}=\bigvee\left\{T^{k} y: y \in \Gamma, k=0,1,2, \ldots\right\}\right\}
$$

where $\bigvee \mathcal{R}$ denotes the closed linear span of the vectors in \mathcal{R}.
If $\mu(T)$ is finite or denumerable, then \mathcal{X} is necessarily separable. Throughout this note we shall always assume that \mathcal{X} is separable and infinite dimensional.

If $A \in \mathcal{L}(\mathcal{X})$ and $B \in \mathcal{L}(\mathcal{Y})$, then $A \oplus B$ denotes the direct sum of A and B acting in the usual fashion on the hilbertian direct $\operatorname{sum} \mathcal{X} \oplus \mathcal{Y}$ of \mathcal{X} and \mathcal{Y}. It is an easy exercise to check that $\max [\mu(A), \mu(B)] \leq \mu(A \oplus B) \leq \mu(A)+\mu(B)$.

Let $T \in \mathcal{L}(\mathcal{X})$; for each $n \geq 1$, let $T^{(n)}$ denote the direct sum of n copies of T acting in the usual fashion of the direct sum $\mathcal{X}^{(n)}$ of n copies of \mathcal{X}. It readily follows from the previous observations that

$$
\begin{aligned}
\max \left[\mu\left(T^{(m)}\right), \mu\left(T^{(n)}\right)\right] & =\mu\left(T^{(\max [m, n])}\right) \leq \mu\left(T^{(m+n)}\right) \\
& \leq \mu\left(T^{(m)}\right)+\mu\left(T^{(n)}\right), m, n \geq 1
\end{aligned}
$$

For which sequences $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ of natural numbers satisfying the conditions $\mu_{\max [m, n]} \leq \mu_{m+n} \leq \mu_{m}+\mu_{n}, m, n \geq 1$, does there exist a Banach space operator T such that $\mu\left(T^{(n)}\right)=\mu_{n}$ for all $n=1,2, \ldots$?

[^0]
[^0]: This research was partially supported by Grants of the National Science Foundation.

