ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 20, Number 2, Spring 1990

ON THE MULTIPLICITY OF $T\oplus T\oplus \cdots\oplus T$

DOMINGO A. HERRERO AND WARREN R. WOGEN

To the memory of our friends and colleagues Constantin Apostol and Doug McMahon

1. Introduction. Let $\mathcal{L}(\mathcal{X})$ denote the algebra of all (bounded linear) operators on a complex Banach space \mathcal{X} . The *multiplicity* of $T \in \mathcal{L}(\mathcal{X})$ is the cardinal number defined by

$$\mu(T) = \min_{\Gamma \subset \mathcal{X}} \{ \operatorname{card} \Gamma : \mathcal{X} = \bigvee \{ T^k y : y \in \Gamma, k = 0, 1, 2, \dots \} \},\$$

where $\bigvee \mathcal{R}$ denotes the closed linear span of the vectors in \mathcal{R} .

If $\mu(T)$ is finite or denumerable, then \mathcal{X} is necessarily separable. Throughout this note we shall always assume that \mathcal{X} is *separable* and *infinite dimensional*.

If $A \in \mathcal{L}(\mathcal{X})$ and $B \in \mathcal{L}(\mathcal{Y})$, then $A \oplus B$ denotes the direct sum of A and B acting in the usual fashion on the hilbertian direct sum $\mathcal{X} \oplus \mathcal{Y}$ of \mathcal{X} and \mathcal{Y} . It is an easy exercise to check that $\max[\mu(A), \mu(B)] \leq \mu(A \oplus B) \leq \mu(A) + \mu(B)$.

Let $T \in \mathcal{L}(\mathcal{X})$; for each $n \geq 1$, let $T^{(n)}$ denote the direct sum of n copies of T acting in the usual fashion of the direct sum $\mathcal{X}^{(n)}$ of n copies of \mathcal{X} . It readily follows from the previous observations that

$$\max \left[\mu(T^{(m)}), \mu(T^{(n)}) \right] = \mu(T^{(\max[m,n])}) \le \mu(T^{(m+n)})$$
$$\le \mu(T^{(m)}) + \mu(T^{(n)}), m, n \ge 1.$$

For which sequences $\{\mu_n\}_{n=1}^{\infty}$ of natural numbers satisfying the conditions $\mu_{\max[m,n]} \leq \mu_{m+n} \leq \mu_m + \mu_n, m, n \geq 1$, does there exist a Banach space operator T such that $\mu(T^{(n)}) = \mu_n$ for all n = 1, 2, ...?

This research was partially supported by Grants of the National Science Foundation.

Copyright ©1990 Rocky Mountain Mathematics Consortium