ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 20, Number 2, Spring 1990

INVARIANT SUBSPACES AND THIN SETS

JOHN FROELICH

This expository article will outline some connections between the existence of compact operators in reflexive operator algebras with a commutative subspace lattice (CSL algebras) and the theory of "thin sets" in harmonic analysis. Full details will appear elsewhere [5].

Let X be a compact metric space, μ a finite Borel measure on X and \leq a closed partial-order on X. The operator algebra Alg (X, \leq, μ) is described in [1] where its main properties are developed. We mention that

Lat $(Alg(X, \leq, \mu) = \mathcal{L}(X, \leq) = \{P_E : E \text{ is a decreasing Borel set}\}.$

We are concerned with the existence of compact operators in Alg (X, \leq, μ) .

EXAMPLE 1. Let X = [0, 1], with Lebesgue measure dx and the usual linear order. Then $A = \text{Alg}([0, 1], \leq, dx)$ is a nest algebra consisting of all operators on $L^2[0, 1]$ "supported" on the graph of the linear order

Received by the editors on September 10, 1987.

Copyright ©1990 Rocky Mountain Mathematics Consortium