ON PERTURBATIONS OF REFLEXIVE ALGEBRAS

HARI BERCOVICI AND FLORIN POP

We denote by \mathcal{H} , \mathcal{L} (\mathcal{H}), and \mathcal{K} a complex Hilbert space, the algebra of bounded linear operators on \mathcal{H} , and the ideal of compact operators on \mathcal{H} , respectively. We recall that a subalgebra $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ is said to be *reflexive* if it contains every operator T such that $T\mathcal{M} \subset \mathcal{M}$ whenever \mathcal{M} is closed invariant subspace for \mathcal{A} .

In this paper we provide elementary examples that answer in the negative the following two questions.

PROBLEM 1. Suppose that $A \subset \mathcal{L}(\mathcal{H})$ is a reflexive algebra. Is then $A + \mathcal{K}$ norm-closed?

PROBLEM 2. Suppose that \mathcal{A}_n , $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ are similar reflexive algebras, $n \geq 0$, and $\lim_{n \to \infty} \operatorname{dist}(\mathcal{A}_n, \mathcal{A}) = 0$. Can we choose invertible operators X_n such that $X_n^{-1}\mathcal{A}X_n = \mathcal{A}_n$ and $\lim_{n \to \infty} ||X_n - I|| = 0$?

The distance mentioned in Problem 2 is, of course, the Pompeiu-Hausdorff distance between the unit balls of \mathcal{A}_n and \mathcal{A} .

We note that Problem 1 has an affirmative answer if the invariant subspaces of \mathcal{A} are totally ordered by inclusion (i.e., \mathcal{A} is a nest algebra); see [6]. The answer to Problem 1 is negative for algebras with commutative invariant subspace lattice (CSL-algebras); see [7]. See also [1] and [11] for more details about such algebras.

The answer to Problem 2 is positive if \mathcal{A}_n and \mathcal{A} are nest algebras. Problem 2 has a negative answer is \mathcal{A} is a CSL-algebra (see [5]), but it is open for algebras acting on finite-dimensional spaces. See [2, 3, 4, 10 and 12] for more information about this problem.

Received by the editors on October 19, 1987.

The research of the first author was supported in part by a grant from the National Science Foundation.