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INNER MULTIPLIERS OF THE BESOV SPACE, 0 < p ≤ 1

PATRICK AHERN AND MIROLJUB JEVTIĆ

0. For α > 0 let k be the integer so that k − 1 ≤ α < k. Then, for
p > 0, the Besov space Bp

α is the set of functions f , holomorphic in the
unit disc U such that

||f ||pp,α =
∫

|f (k)(z)|p(1 − |z|)p(k−α)−1dm(z) < ∞.

Here dm denotes area measure in U . We will assume from now on that
1 − pα > 0. (When 1 − pα < 0 the functions in Bp

α are continuous out
to the boundary of U .) In [9], I. Verbitsky characterized those inner
functions B ∈ MBp

α, i.e., for which Bf ∈ Bp
α for all f ∈ Bp

α, p ≥ 1. See
[5, Chapter 17], for a discussion of inner functions. In this paper we
consider the case 0 < p ≤ 1.

The first step is to show that any such inner function is a Blaschke
product whose zero set is a finite union of interpolating sequences. The
proof of this for p ≤ 1 is similar to Verbitsky’s proof for p ≥ 1. Indeed,
after some preliminaries we appeal directly to his argument. So the
question becomes: Which such Blaschke products are in MBp

α?

For p > 1, the Carleson measures for Bp
α were determined by D.

Stegenga [6]. Using this result one immediately gets a necessary and
sufficient condition on B in order that B ∈ MBp

α. However, this
condition does not involve the distribution of zeros of B in any direct
way. The whole point of Verbitsky’s paper is to find a necessary and
sufficient condition on the zeros of B in order that B ∈ MBp

α. We take
the same point of view.

In the first section we find the Carleson measures for Bp
α, 0 < p ≤ 1.

For the case p > 1, Stegenga used the ideas involved in E. Stein’s proof
[7] of the original Carleson measure theorem together with the strong
capacitary estimates of D. Adams [1]. Our proof is the same except
we must use the recently proved “strong Hausdorff capacity” estimates
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