OSCILLATIONS OF DIFFERENCE EQUATIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS

G. LADAS

ABSTRACT. We obtain sufficient conditions for the oscillation of all solutions of some difference equations with positive and negative coefficients. Our results include the following: Consider the difference equation

(1)
$$A_{n+1} - A_n + pA_{n-k} - qA_{n-l} = 0, \quad n = 0, 1, 2, \dots,$$

where p and q are nonnegative real numbers and k and l are nonnegative integers such that

$$p > q \ge 0$$
, $k \ge l \ge 0$, $q(k - l) \le 1$

and

$$p-q>\frac{k^k}{(k+1)^{k+1}} \quad \text{ if } k\geq 1$$

$$p-q > 1$$
 if $k = 0$

Then every solution of Equation (1) oscillates. Extensions to equations with variable coefficients were also obtained.

1. Introduction and preliminaries. Recently, Györi and Ladas [5], Ladas [7] and Erbe and Zhang [3] investigated the oscillatory behavior of solutions of difference equations of the form

(1)
$$A_{n+1} - A_n + \sum_{j=0}^{m} P_j(n) A_{n-j} = 0, \quad n = 0, 1, 2, \dots,$$

with positive coefficients $P_j(n)$. Our aim in this paper is to obtain oscillation results for some difference equations with positive and negative coefficients.

Let $\mathbf{N} = \{0, 1, 2, \dots\}$ be the set of natural numbers and \triangle denote the forward difference operator defined by $\triangle A_n = A_{n+1} - A_n$. Consider the linear difference equation with positive and negative coefficients

(2)
$$\triangle A_n + P(n)A_{n-k} - Q(n)A_{n-l} = 0, \quad n = 0, 1, 2, \dots,$$

AMS 1980 Mathematics Subject Classification: 39A10.