NODAL OSCILLATION AND WEAK OSCILLATION OF ELLIPTIC EQUATIONS OF ORDER 2m

V. B. HEADLEY

1. Introduction. Let L and M_0 be differential operators defined by

(1.1)
$$Lu = \sum_{|\alpha|=0}^{m} \sum_{|\beta|=0}^{m} (-1)^{|\alpha|} D^{\alpha} [A_{\alpha\beta}(x)D^{\beta}u], \quad x \in \Omega \subseteq \mathbf{R}^{n},$$

and

(1.2)
$$M_0 v = (-1)^m \sum_{|\alpha| = |\beta| = m} D^{\alpha} [a_{\alpha\beta}(x) D^{\beta} v] + a_0(x) v,$$

where the coefficient functions $A_{\alpha\beta}$ and $a_{\alpha\beta}$, $|\alpha| \leq m$, $|\beta| \leq m$, are real-valued, satisfy the symmetry conditions

(1.3)
$$A_{\alpha\beta} = A_{\beta\alpha}(x), \quad x \in \Omega, \ |\alpha| \le m, \ |\beta| \le m,$$

$$(1.4) a_{\alpha\beta}(x) = a_{\beta\alpha}(x), \quad |\alpha| = |\beta| = m, \ x \in \Omega,$$

and are sufficiently smooth on the unbounded open set Ω . (The multiindex notation employed here is that used in [1, 2 and 6].) In this paper the sign of $a_0(x)$ is *unrestricted*, unless the contrary is stated.

HYPOTHESIS 1.1. Throughout this paper, G will denote a nonempty open subset of Ω . (We will occasionally need to consider the special case where $G = \Omega$.)

DEFINITION 1.2. If G is bounded and satisfies the hypotheses of [2, Lemma 9.1], and if the differential equation

$$(1.5) Lu = 0$$

has a nontrivial solution u in $H_m^0(G) \cap C^{2m}(G)$, then G is called a *nodal* domain for L. We will say that (1.5) is *nodally oscillatory* in Ω iff, for

Copyright ©1990 Rocky Mountain Mathematics Consortium