AN APPENDIX TO "CURVATURE AND PROPER HOLOMORPHIC MAPPINGS BETWEEN BOUNDED DOMAINS IN Cⁿ"

E.B. LIN AND B. WONG

For the implication from Theorem 4 to Theorem 5 in [1], we merely considered the boundary convergence case as our proof stood, because of the following fact. This is a folklore following from those old results in [2] and [3].

Fact. Let D_1 and D_2 be two strongly pseudoconvex bounded domains in $C^n, n \geq 2$. A sequence of proper holomorphic mappings $\{f_i : D_1 \to D_2\}$ can never converge to a non-proper holomorphic mapping $f: D_1 \to D_2$ on compact subsets.

Proof. Let's assume that $\{f_i\}$ converges on compact subsets to a non-proper holomorphic map $f:D_1\to D_2$. Consequently, there is a sequence $\{x_k\}$ in D_1 convergent to $p\in\partial D_1$, such that $\{y_k=f(x_k)\}$ converges to a point $q\in D_2$. By Pincuk's theorem [2], all $f_i:D_1\to D_2$ are finite unbranching covers. We denote by d_i the diameter (with respect to the distance function d_{D_1} induced by Cheng-Yau Einstein Kähler metric on D_1) of the fiber $\{f_i^{-1}(f_i(z_1))\}$ at $z_1\in D_1$.

Suppose a subsequence of $\{d_i\}$ tends to ∞ as i grows, apparently there is a sequence of covering transformations which will bring z to ∂D_1 . Applying [3], one concludes $D_1 \cong B_n$. By Cartan's fixed point theorem ([1] Theorem, (i) p. 187), this implies $D_1 \cong B_n \cong D_2$. Thus all f_i are automorphisms. By classical H. Cartan's compactness theorem, f must be a biholomorphism. This contradicts our assumption.

On the contrary, let's assume $\{d_i\}$ are bounded above by a constant $M < +\infty$. By path-lifting property of coverings, triangle inequality of metrics and the assumption of convergence of $\{f_i\}$ to f, it is elementary to show, for sufficiently large $k, d_{D_1}(x_1, x_k) \leq M + d_{D_2}(y_1, q) + \epsilon$, here $d_{D_2} = \text{distance}$ function induced by Cheng-Yau Einstein Kähler metric