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VECTOR-VALUED LOCAL MINIMIZERS OF
NONCONVEX VARIATIONAL PROBLEMS

PETER STERNBERG

In recent work with R.V. Kohn [7], a new and general method for
obtaining local minimizers of variational problems was established.
This technique uses the notion of I'-convergence of functionals, first
introduced by De Giorgi [1] in the 1960’s, and yields existence of local
minimizers to a ['-convergent sequence of problems, provided, roughly
speaking, that the limit problem possesses a local minimizer which is
isolated. In this paper, I apply the method to establish existence of
vector-valued local minimizers u. : ! — R? of the problem

(1) inf / W (u) + €2|Vu|® dz,
u€HY(Q) Jqo

for certain open, bounded sets 2 C R™ and ¢ sufficiently small. Here

|Vu|? = |Vup|? + |[Vug|?, 99 is taken to be Lipschitz-continuous, and

W is a nonnegative “double-well” potential vanishing at two points a
and b in R2.

In particular, such a minimizer will be a nonconstant solution of the
Euler-Lagrange equation (system):
(2) 26?Au=V,W(u) inQ,

with the “natural” Neumann condition

Opu=0 on 0.

Variational problems of form (1) arise in the so-called gradient theory
of phase transitions [5, 6], as well as in studies of pattern selection [8].
The form of nonconstant local minimizers of (1) was first conjectured
in [8].

A full definition of I'-convergence is given below in (6) and (7), but the
essential idea in this setting is to obtain the first term in an asymptotic
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