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NODAL PROPERTIES OF SOLUTIONS
OF PARABOLIC EQUATIONS

SIGURD ANGENENT"

1. Introduction. In this note we review the known facts about the
zero set of a solution of a scalar parabolic equation

(1) ur = a(z, t)uze+b(z, t)uz+c(z, t)u, zo<z<z,0<t<T.

In particular, we discuss some applications to spectral theory, the
dynamics of nonlinear diffusion equations, and the geometric heat
equation for plane curves.

2. The zero number. Let u be a classical solution of (1) and
assume u is continuous on the rectangle [zg,z1] x [0,T]. Moreover,
assume that

u(z;,t) #0 fori=0,1 and 0<t<T.

Then, for each t € [0,7] we define the set Z(t) = {z € [xo,z1] |
u(t,z) = 0}, and we let z(t) denote the number of elements of Z(¢).
The set Z(t) is a compact subset of the open interval (zg,z1).

Finally, we always assume the following about the coefficients a, b and
c
Ay Ay, Agyy Aty by, by and c are continuous on [zg, z1] X [0, 7.

(2)

Moreover, a(z,t) is strictly positive.

In this situation we have the following:

Theorem A. For any 0 < t < T, z(t) is finite. If, for some
0 < tp < T, the function u(ty) has a double zero, then for all
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