PSEUDO-CONVERGENCE IN NORMED LINEAR SPACES

TECK-CHEONG LIM

A bounded sequence $\{x_n\}$ in a Banach space X is said to pseudoconverge to a point x_0 , called the pseudo-limit, if x_0 minimizes the function $f_S(x) = \limsup ||y_m - x||$, $x \in X$, for every subsequence $S = \{y_m\}$ of $\{x_n\}$. If the pseudo-limit is unique, we call the sequence $\{x_n\}$ uniquely pseudo-convergent. This notion of convergence arose in connection with fixed point theory of multivalued nonexpansive mappings, see, e.g., [1, 2, 4, 5, 7, 10]. The basic idea is that if x_n is a bounded sequence of approximate fixed points of a multivalued nonexpansive mapping T, then there may exist a uniquely pseudo-convergent subsequence of x_n whose pseudo-limit is a fixed point of T.

In this paper we characterize pseudo-convergence in certain Banach spaces. A main result is that, in a space with a uniformly Gateaux differentiable norm, a sequence $\{x_n\}$ pseudo-converges to x if and only if $J(x_n - x)$ converges weak*ly to 0, where J is a duality map. We also consider other related types of convergence. Note that spaces with a uniformly Gateaux differentiable norm have appeared in several other contexts, including semigroups and approximations, see, e.g., Klee [3], Reich [9, 11, 12], Zizler [13, 14].

A space is said to satisfy (w^*) -Opial's condition if the condition $\{x_n\}$ converging weakly (weak'ly) to x_0 implies that

$$\lim \sup ||x_n - x_0|| < \lim \sup ||x_n - y||$$

for all $y \neq x_0$. Examples of spaces satisfying Opial's condition include Hilbert spaces and ℓ_p , $1 \leq p < \infty$. $L^p[0,1]$ for $p \neq 2$ do not satisfy the condition [8]. ℓ_1 satisfies w^* -Opial's condition.

Received by the editors on October 1, 1986, and in revised form on September 2, 1987.

 $^{2,\,1987.}$ $Keywords\ and\ phrases.$ Pseudo-convergence, asymptotic center, nonexpansive mapping.