ℵ-PROJECTIVE SPACES IN NONCOMPACT CATEGORIES

LOUIS M. FRIEDLER AND STEPHEN WILLARD

ABSTRACT. Neville and Lloyd have defined \aleph -projective topological spaces and characterized them in the category of compact Hausdorff spaces and continuous maps. The present paper characterizes the spaces \aleph -projective in various noncompact categories of topological spaces and maps.

1. Introduction. A topological space X is *projective* in a category provided whenever $g: X \to Z$ and $f: Y \to Z$ are admissible maps with f onto, a map $\psi: X \to Y$ can be found with $f \circ \psi = g$. Thus, the requirement is precisely that a solution ψ can be found making diagram (1) below commutative.

(1)
$$X \xrightarrow{--\psi} Y$$

$$f \text{ (onto)}$$

Let \aleph be an infinite cardinal. In [16] Neville and Lloyd defined a space to be \aleph -projective (in the category of compact Hausdorff spaces and continuous maps) provided diagram (1) has a solution ψ whenever all spaces are compact Hausdorff and the weight of Y is less than \aleph . They then showed that a compact Hausdorff space X is \aleph -projective if and only if it is a totally disconnected F_\aleph -space. (A space is an F_\aleph -space if and only if disjoint \aleph -open sets have disjoint closures; a set is \aleph -open if it is the union of fewer than \aleph cozero sets.)

Our purpose here is to study \aleph -projectivity in various categories in which the objects are not necessarily compact. For this purpose, we will modify the definition of an \aleph -projective space by requiring that the weight of Z in diagram (1) also be less than \aleph . The resulting

Copyright © 1991 Rocky Mountain Mathematics Consortium

Received by the editors on June 22, 1987, and in revised form on January 28, 1988.