EXISTENCE AND MULTIPLICITY RESULTS FOR A CLASS OF ELLIPTIC PROBLEMS WITH CRITICAL SOBOLEV EXPONENTS

D. COSTA AND G. LIAO

0. Introduction. In this paper we consider the boundary value problem

$$\begin{cases} -\Delta u = \lambda u + K(x) |u|^{2^*-2} u & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases},$$

where Ω is a bounded smooth domain in \mathbf{R}^n $(n \geq 3)$ or a compact manifold with boundary, $2^* = 2n/(n-2)$ is the critical exponent for the Sobolev embedding $H_0^1(\Omega) \subset L^p(\Omega)$ and K is a smooth function on Ω .

When K(x)=1 and Ω is a domain, some remarkable results have been obtained: Brézis and Nirenberg proved in [5] existence of a positive solution of (0.1), with $n \geq 4$, for all $\lambda \in (0, \lambda_1)$, where λ_1 is the first eigenvalue for the negative Laplacian in Ω under Dirichlet boundary conditions; in [6] it was proved that (0.1), with $n \geq 4$, has a solution for any $\lambda > 0$; later, in [7], the existence and multiplicity problem for (0.1) with λ near an eigenvalue λ_j was studied; their main result was that (0.1) has at least m_j pairs of solutions for $\lambda \in (\bar{\lambda}_j, \lambda_j)$, where m_j is the multiplicity of λ_j and the constant $\bar{\lambda}_j$ can be estimated.

Problem (0.1) has a deep root in Riemannian geometry and physics. If one deforms a metric conformally in a closed manifold (\mathcal{M}^n, g) of dimension $n \geq 3$ by a positive function $u : \mathcal{M} \to \mathbf{R}$, then u satisfies the equation

(0.2)
$$\begin{cases} \frac{4(n-1)}{n-2} \Delta u + Ru + Ku^{(n+2)/(n-2)} = 0 & \text{on } \mathcal{M} \\ u > 0 & \text{on } \mathcal{M}, \end{cases}$$

where Δ and R are, respectively, the Laplacian and the scalar curvature with respect to the metric g. The function K represents the scalar curvature of the new metric $u^{4/(n-2)}g$. An outstanding geometric

Received by the editors on March 29, 1988.