ON A FAMILY OF CONVEX POLYNOMIALS

T.J. SUFFRIDGE

Consider the nth partial sum of the series $e^{1+z}=\sum_{k=0}^{\infty}((1+z)^k/k!)$. Set $P_n(z)=\sum_{k=0}^n((1+z)^k/k!)$ and note that $P_{n-1}(z)=P_n'(z)$. We wish to show that $P_n(D)$ is convex where $D=\{|z|<1\},\ n\geq 1$. The proof is by induction. Clearly $P_1(D)$ is convex. Also, $P_2(z)=(5/2)+2z+(z^2/2)$ and it is easy to see that $P_2(D)$ is convex. That is,

$$\operatorname{Re}\left[\frac{zP_2''}{P_2'} + 1\right] = \operatorname{Re}\left[\frac{2+2z}{2+z}\right] > 0$$

when |z| < 1.

Suppose it is known $P_k(D)$ is convex for k < n where $n \ge 3$. Because of the convexity and the fact that all the coefficients are positive, $\operatorname{Re}(P_n'(z)) = \operatorname{Re}(P_{n-1}(z)) \ge P_{n-1}(-1) = 1$ so that $|P_n'(z)| \ge 1$, $|z| \le 1$.

Thus, we have

$$zP_n''(z) + P_n'(z) = P_{n-1}(z) + zP_{n-2}(z)$$

$$= P_{n-1}(z) + z \left[P_{n-1}(z) - \frac{(1+z)^{n-1}}{(n-1)!} \right]$$

$$= (1+z)P_{n-1}(z) - \frac{z(1+z)^{n-1}}{(n-1)!}.$$

Since the minimum value of a harmonic function occurs on the boundary, we set $z=e^{i\theta}$ and see that

$$\operatorname{Re}\left[1 + z - \frac{z(1+z)^{n-1}}{(n-1)!P'_n(z)}\right] \ge 1 + \cos\theta - \frac{|1+z|^{n-1}}{(n-1)!}$$

$$\ge (1 + \cos\theta) - \frac{(1+\cos\theta)2^{n-2}}{(n-1)!}$$

$$= (1+\cos\theta)\left(1 - \frac{2^{n-2}}{(n-1)!}\right)$$

$$> 0$$

Received by the editors on December 17, 1988. 1980 AMS Subject Classification. 30C10, 30C45, 30C50.

Copyright ©1992 Rocky Mountain Mathematics Consortium