FUCHS' PROBLEM 43

H. PAT GOETERS

What is the relationship between the abelian groups A and C, if $\operatorname{Ext}(A,B)\cong\operatorname{Ext}(C,B)$ for every abelian group B? This is problem 43 in [3]. In this note we give a complete solution to this problem when A,B and C are torsion-free abelian groups of finite rank. Our approach is to show that numerical invariants considered in [5] actually characterize the reduced finite rank torsion-free groups up to quasi-isomorphism.

This paper is essentially self-contained; however, the reader may wish to refer to $[\mathbf{1},\ \mathbf{3},\ \mathrm{and}\ \mathbf{4}]$. For $B \leq A$, we say that B is a quasi-summand of A if for some $n \neq 0$ and $A' \leq A,\ nA \leq B \oplus A' \leq A,\ \mathrm{and}\ A$ is called strongly indecomposable in case A has no nontrivial quasi-summands. If $C \cong B$ and $nA \leq B \leq A,\ \mathrm{then}\ A$ and C are called quasi-isomorphic. As usual, set $QA = Q \otimes_Z A$ and regard $A \leq QA$.

Let $S_A(C)$ be the subgroup of C generated by f(A) for all $f \in \text{Hom } (A,C)$. A subgroup B of C will be said to be full in C if $\langle B \rangle_* = C$ where $\langle B \rangle_*$ denotes the pure subgroup of C generated by B.

Below all groups are torsion-free. The quasi-endomorphism ring of A is QE(A) where E(A) is the endomorphism ring of A. By the well-known result of J. Reid, QE(A) is left Artinian if and only if A is quasi-isomorphic to a finite direct sum $A_1 \oplus \cdots \oplus A_n$ with each A_i strongly indecomposable. Moreover, if $\alpha \in QE(A_i)$, then α is invertible or α is nilpotent [7]. The proof of the main theorem will rest upon the

Lemma. Let A and C be torsion-free groups with left Artinian quasiendomorphism rings. If $S_A(C)$ is full in C and $S_C(A)$ is full in A, then A and C have an isomorphic nonzero quasi-summand.

Proof. Let E = E(A) and let R denote the nilradical of E. For J = Jacobson radical of QE, $R = J \cap E$, and since QE is left Artinian, J (hence R) is nilpotent. Call $N = \langle RA \rangle_*$ which is the pure subgroup

Copyright ©1992 Rocky Mountain Mathematics Consortium

Received by the editors on September 15, 1988, and in revised form on February 28, 1989.