PULLBACKS OF BANACH BUNDLES

J.W. KITCHEN AND D.A. ROBBINS

ABSTRACT. Let S and T be compact Hausdorff spaces, $\alpha:S\to T$ a continuous map, and $\rho:F\to T$ a Banach bundle. The bundle $\pi:E\to S$ which is the pullback to S of ρ via α , has fibers given by $E_p=F_{\alpha(p)}$ for $p\in S$. The present paper investigates some properties, such as norm continuity and Hausdorfness, which the bundle π inherits from ρ via the map α . The main result presents a relation between the section spaces $\Gamma(\rho)$ and $\Gamma(\pi)$ via inductive tensor products.

This paper continues the study of Banach bundles which has been pursued by the authors in previous papers $[\mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}]$, to which the reader is referred for notations, definitions, and general information. This time the focus is upon pullback bundles. If $\pi: F \to T$ is a bundle of Banach spaces, and if $\alpha: S \to T$ is a continuous map, then there is a bundle of Banach spaces $\pi: E \to S$, called the *pullback* of the given bundle by α , with the following properties

- 1) if $p \in S$, then $E_p = \pi^{-1}(\{p\})$, the stalk in the pullback bundle over p, is an isomorphic copy of $F_{\alpha(p)} = \rho^{-1}(\{\alpha(p)\})$;
- 2) If σ is any section in $\Gamma(\rho)$, then its pullback by α , namely $\alpha^*(\sigma) = \sigma \circ \alpha : S \to E$ is a section in $\Gamma(\pi)$. (See Kitchen and Robbins [3] for a discussion of pullbacks.)

Our results are basically of three sorts. First, we investigate properties which the pullback bundle inherits from the given bundle. (If, for instance, the bundle $\rho: F \to T$ is norm continuous, is the pullback bundle $\pi: E \to S$ also norm continuous, is the pullback bundle $\pi: E \to S$ also norm continuous?) The main result (Theorem 5) presents a relation between the section spaces $\Gamma(\rho)$ and $\Gamma(\pi)$ via inductive tensor products. The substance of the theorem is summarized by the equation

$$C(S)\hat{\otimes}_{C(T)}\Gamma(\rho) \cong \Gamma(\pi),$$

Received by the editors on November 3, 1988, and in revised form on February $10,\,1989.$

¹⁹⁹⁰ AMS Mathematics subject classification. Primary 46H25, 46M05. Keywords and phrases. Banach bundle, pullback, section spaces, inductive tensor products.