MEAGER-NOWHERE DENSE GAMES (I): n-TACTICS

MARION SCHEEPERS

ABSTRACT. In the introduction to this article we give a brief survey of a problem in the theory of Banach-Mazur games. We introduce two games, MG(J) and SMG(J) (where J is a free ideal on some set), which evolved from a study of an example relevant to this problem. The second player has a winning perfect information strategy in both of these games and we examine under what conditions it suffices for the second player to remember only the most recent n or fewer moves of the opponent (n some fixed positive integer) in order to insure a win. Strategies depending on only this information are called n-tactics.

The subject of this article belongs to the areas of combinatorial games and of topological games of length ω . In this rather lengthy introduction we give a short survey of the problem that motivated the work to be presented here. Readers who are interested in more details could consult Telgarsky's survey paper [11] and its extensive bibliography to the source literature.

The Scottish Book [14, Prob. 3] is probably the earliest popular record of the Banach-Mazur game. This game on a topological space (X,τ) is denoted by $BM(X,\tau)$ and is played as follows. First, player ONE picks a nonempty open subset E_1 of X, after which TWO picks a nonempty open subset N_1 of E_1 . Next, ONE picks a nonempty open subset E_2 of N_1 and TWO responds with a nonempty open subset N_2 of E_2 , and so on. In this manner, the players construct a sequence $(E_1, N_1, \ldots, E_k, N_k, \ldots)$ where for each positive integer k,

- (i) E_k denotes ONE's k'th move and N_k , TWO's k'th move.
- (ii) E_{k+1} is a subset of N_k which in turn is a subset of E_k , and these are all nonempty open subsets of X.

AMS (MOS) Subject Classification. 04A99, 54H99.

 $Key\ words\ and\ phrases.$ Free ideal, game, winning strategy, n-tactic, Banach-Mazur game, partition relation.

The research for this project was partially funded by NSF grant DMS-85-03732. Received by the editors on September 1, 1988 and in revised form on April 3, 1989.