SPACES ON WHICH UNCONDITIONALLY CONVERGING OPERATORS ARE WEAKLY COMPLETELY CONTINUOUS

PAULETTE SAAB AND BRENDA SMITH

ABSTRACT. Let Ω be a compact Hausdorff space, and let E be a Banach space with unconditional reflexive decomposition, then every unconditionally converging operator T on $C(\Omega,E)$, the space of E-valued continuous functions on Ω , is weakly completely continuous, i.e., T sends weakly Cauchy sequences into sequences that converge weakly.

Introduction. Let $T: X \to Y$ be a bounded linear operator from a Banach space X into a Banach space Y. We say that T is weakly compact (w.c.) if for every bounded sequence (x_n) in X, there is a subsequence (x_{n_k}) such that (Tx_{n_k}) converges weakly in Y. We say that T is weakly completely continuous (w.c.c.) (also called Dieudonné operator) if for every weakly Cauchy sequence (x_n) in X, the sequence (Tx_n) converges weakly in Y, and we say that T is unconditionally converging (u.c.) if for every weakly unconditionally Cauchy series (w.u.c.) $\sum_n x_n$ in X, the series $\sum_n Tx_n$ converges unconditionally in Y. Here recall that a series $\sum_n x_n$ is weakly unconditionally Cauchy if for each x^* in X^* the series $\sum_n |x^*(x_n)|$ is convergent. It is clear that Tweakly compact implies T weakly completely continuous which in turn implies T unconditionally converging. In his fundamental paper [9] A. Pelczynski looked at spaces on which every unconditionally converging operator is weakly compact. Such spaces are said to have Pelczynski's property (V). In [9] Pelczynski showed that among classical Banach spaces, the spaces $C(\Omega)$ of scalar-valued continuous functions on a compact Hausdorff space Ω have property (V), and in [7] W. Johnson and M. Zippin showed that more generally any Banach space whose dual is isometric to an L^1 space have property (V). Also in [9] spaces with property (u) were introduced; for this recall that a Banach space E has property (u) if for any weakly Cauchy sequence (e_n) in E there

Research of the first author supported in part by an NSF grant DMS 87500750.

Copyright ©1992 Rocky Mountain Mathematics Consortium

Received by the editors on October 31, 1989.

1980 AMS (MOS) Subject Classification. Primary 46E40, 46G10, Secondary 28B05, 28B20.