ON THE POWER POLYNOMIAL x^d OVER GALOIS RINGS

JAVIER GOMEZ-CALDERON

ABSTRACT. Let p denote a prime. Let $\operatorname{GR}(p^n,m)$ denote the Galois ring of order p^{nm} . Let $P_d(x)$ denote the power polynomial $P_d(x) = x^d$ over the ring $\operatorname{GR}(p^n,m)$. In this paper we determine two cardinalities: the cardinality of the value set $\{P_d(x): x \in \operatorname{GR}(p^n,m)\}$, and the cardinality of the preimage $P_d^{-1}(P_d(x))$ for each x in $\operatorname{GR}(p^n,m)$.

1. Introduction. For a prime p, let $GR(p^n, m)$ denote the Galois ring of order p^{nm} which can be obtained as a Galois extension of Z_{p^n} of degree m. Thus $GR(p^n, 1) = Z_{p^n}$ and $GR(p, m) = K_{p^m}$, the finite field of order p^m . The reader can find further details concerning Galois rings in the excellent reference [1].

Now, for $d \geq 1$, let $P_d(x) = x^d$ denote the power polynomial of degree d over $GR(p^n, m)$. Then it is easy to check that the cardinality of the value set of $P_d(x)$ over the field $GR(p, m) = K_p m = K_q$ depends only upon (d, q-1), the greatest common divisor of d and q-1. To be more specific,

$$|\{P_d(x): x \in GR(p, m) = K_q\}| = \frac{q-1}{(q-1, d)} + 1$$

where $q = p^m$.

In this paper we not only determine the cardinality of the value set $\{P_d(x): x \in GR(p^n, m)\}$ for $n \geq 1$, but if $x_0 \in GR(p^n, m)$, we also determine the cardinality of the preimage of $P_d(x_0)$.

2. p odd. Throughout this section we assume that p is odd. Let $GR^*(p^n, m)$ denote the group of units of $GR(p^n, m)$. Then, see [1, Theorem XVI.9], $GR^*(p^n, m)$ is a direct product of two groups G_1 and

Received by the editors on September 8, 1989 and in revised form on June 15, 1990.

Copyright ©1992 Rocky Mountain Mathematics Consortium