ON THE EXTENSION OF DERIVATIONS TO SOME CLOSURES

SILVIA MOLINELLI AND GRAZIA TAMONE

Introduction. Let A be a noetherian ring with integral closure \overline{A} in its total quotient ring k(A). When A is an integral domain, it is well known that any differentiation $\underline{D}=(1,D_1,\ldots,D_i,\ldots)$ of A extends to \overline{A} [3, Section 2], but, generally, \underline{D} doesn't extend to a ring lying between A and \overline{A} (see [4 ex. 1.1 or ex. 2.6]). Now let $A \subset B$ be noetherian integral domains. In Section 1, we consider some closures of A in B with respect to a given property. We prove that a differentiation \underline{D} of A which extends to B also extends to the u-closure and to the F-closure of A in B; moreover, \underline{D} extends to the t-closure of A in B whenever B is finite as an A-module. As regards (n-root)-closure, we show \underline{D} can be extended under particular assumptions but not as a general rule (Section 1, Remark 1.9); we note that the (2,3)-closure has been already studied in [5].

The above problem can be considered from another point of view. If A is any noetherian ring, each ring between A and \overline{A} can be seen as a suitable closure of A in k(A) called Δ -closure and denoted with A^{Δ} (where Δ is a set of ideals of A, according to [7]). Since generally neither a differentiation of A nor an integrable derivation extends to A^{Δ} , we wonder when a derivation of A can be extended to A^{Δ} (Section 2). For any A^{Δ} , we give a sufficient (but not necessary) condition in order that a derivation D of A can be extended to A^{Δ} (Proposition 2.5), whereas, under suitable assumptions, we show that the extension of D to A^{Δ} can be characterized by certain properties of the conductor β of A in A^{Δ} . In particular, we prove the following. If A has (S_1) -property, D extends to \overline{A} if and only if β is D-differential (Corollary 2.8).

Finally, in Section 3 we consider some classes of Δ -closures A^{Δ} and of derivations D of A satisfying the sufficient condition of Proposition 2.5, so that $D(A^{\Delta}) \subset A^{\Delta}$.

Received by the editors on August 7, 1990.