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1. Introduction. The Gauss-Bonnet theorem was first extended
to pseudo-Riemannian manifolds by Avez [1] and Chern [3]. These
authors produced a global Gauss-Bonnet theorem. For example, Chern
[3] considers oriented pseudo-Riemannian vector bundles of even rank
over compact manifolds and interprets the Gauss-Bonnet formula as
the assertion that the relevant curvature form (that which appears as
the integrand in the Gauss-Bonnet formula) equals the Euler class
of the bundle. This is now the standard abstract formulation of
the generalized Gauss-Bonnet theorem, though usually stated only
for the Riemannian case (cf., e.g., Milnor and Stasheff [7]). For the
tangent bundle of a compact, oriented, pseudo-Riemannian manifold,
this statement reduces to the usual Gauss-Bonnet result.

The obvious elegance of this global Gauss-Bonnet-Chern theorem
does not preclude interest in a pseudo-Riemannian version of the
classical Gauss-Bonnet formula for a two-dimensional domain D with
piecewise smooth boundary Γ:

(1.1)
∫

D

KdV +
∫

Γ

kg ds +
∑

θexterior = 2π

where K is the Gaussian curvature of some metric on D, kg the geodesic
curvature, and θexterior the exterior angle at a nonsmooth point of
Γ. It is fairly straightforward to carry over the differential-geometric
aspects of a proof of this result to the pseudo-Riemannian context.
The only two-dimensional indefinite signature is Lorentzian, and the
essential difference that occur between the Riemannian and Lorentzian
versions of the Gauss-Bonnet formula arise from the differences between
the corresponding orientation-preserving isometry groups SO (2) and
SO (1,1). In particular, these groups essentially determine the relevant
notion of angle and hence θexterior.
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