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DO SUBSPACES HAVE DISTINGUISHED BASES?

DANIEL R. FARKAS AND EDWARD L. GREEN

While trying to develop a computer program to calculate resolutions
for modules over path algebras, the second author conjectured the
existence of an abstract version of the Gram-Schmidt process. Given
a basis for a vector space, there seemed to be an “algorithmically
preferred” basis for each subspace. Although this idea is quite simple-
minded, it does not appear explicitly in any of the standard treatments
of elementary linear algebra. On the other hand, mathematics teachers
will recognize our observation as a concrete description of what we have
all noticed and tried to explain when teaching Gaussian elimination.
In clarifying the obvious we provide some insights into the construction
of Grobner bases, a fundamental tool in computational algebra.

We wish to take advantage of the ordering in an ordered basis for
a vector space. Sometimes a concrete space comes equipped with a
natural ordered basis and, sometimes, as we shall see in an application
to diagonalizability, the ordering can be quite arbitrary.

Example 1. Let K be a field and let V' = K™ be the vector space of
n-tuples with coordinates from K. The standard basis eq,... ,e, has
a standard well-ordering, namely e; < ez < --- < e,. In our discussion
of row echelon form we refer to the reverse ordering on the standard
basis: e, < e, 1 < -+ < ej.

We introduce definitions and notations which will be used in the
remainder of the paper. Let V' be a vector space over a field K with a
given basis B which is well-ordered by <. Each v € V can be written
in a unique way as a linear combination of members of B; if b € B and
its coefficient in this linear combination is nonzero, we will say that b
occurs in v. The maximal b € B (by the ordering of B) which occurs
in v is called the tip of v. If X is a nonempty subset of V, then
TIP(X) will consist of all basis elements in B which occur as the tip of
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