AN EMBEDDING THEOREM AND ITS CONSEQUENCES

K.C. CHATTOPADHYAY, D.P. GHOSH, AND SUSHAMA GUIN

ABSTRACT. It is well known that if X is a Tychonoff space and $F \subset C^*(X)$ separates points and closed sets then the evaluation map e_F corresponding to the family F is an embedding. When e_F is an embedding it does not necessarily follow that F separates points and closed sets. In this note we prove a general embedding theorem and then we use the theorem to characterize exactly those $F \subset C^*(X)$ for which e_F are embeddings. In fact, in our characterization, $C^*(X)$ may be replaced by C(X).

Introduction: Let X be a Tychonoff space and $C^*(X)$ be the set of all real valued bounded continuous functions defined on X. In 1] Ball and Yokura defined $\mathcal{E}(X)$ as the collection of all subsets F of $C^*(X)$ for which the evaluation maps e_F are embeddings. One of our main purposes is to determine the elements of $\mathcal{E}(X)$. If e_F is an embedding, then F generates the T_2 -compactification $e_F X$ of X (see [2]). This reason leads us to characterize those $F \subset C^*(X)$ whose evaluation map e_F are embeddings. Some characterizations of the members of $\mathcal{E}(X)$ follow from the embedding theorems of Mrowka [5, Theorem 2.1] and Engelking [4, p. 122, Problem 2.3.D].

The notion "weakly separates points and closed sets" has been introduced for a family of functions from a topological space to each member of a family of topological spaces. We then use the notion to prove a general embedding theorem which is simpler than those of [5] and [4]. We use this theorem to characterize the elements of $\mathcal{E}(X)$. We conclude the paper by establishing a generalized version of Lemma 3.5 of [1].

1. In order to state and prove our embedding theorem we begin by recalling the following:

Let F be a family of functions $f: X \to Y_f$ where X and Y_f for all $f \in F$ are topological spaces. Then the evaluation map corresponding

AMS (MOS) Subject Classification: 54C25, 54C30, 54D35
Key words and phrases. Weakly separates points and closed sets
Received by the editors on December 4, 1988 and in revised form on February
12, 1990.