WEAK AND NORM CONVERGENCE ON THE UNIT SPHERE

J.R. TORREGROSA

ABSTRACT. In this paper we prove that the properties (KK) and (K) in a Banach space are stable for the generalized Banach products. We also establish some relationship between these and other properties related with weak and norm convergence on the unit sphere of a Banach space.

- 1. Notations. We follow standard terminology that can be found in [1]. Let $(X, ||\cdot||)$ be a Banach space. B_X denotes its closed unit ball, S_X the unit sphere, X^* the topological dual of X. If (x_n) is a sequence in X, let sep $(x_n) = \inf\{||x_n x_m||, \text{ for all } n, m \in \mathbb{N}, m \neq n\}$. We denote by $\mathcal{F}_f(I)$ the family of the finite subsets of set I. K denotes the field of real or complex numbers.
- **2.** Introduction. Several classes of Banach spaces have been introduced in the past according to the fulfillment of certain properties related with weak and norm convergence on the unit sphere of a Banach space $(X, ||\cdot||)$. We can mention:
- (KK): Kadec-Klee Property: If (x_n) is a sequence of elements in X converging weakly to an element x in X such that $||x_n|| \to ||x||$, then (x_n) converges to x in norm, (i.e., for sequences on the unit sphere weak and norm convergence coincide).
- (K): Kadec Property: The weak and the norm topology coincide on the unit sphere.
- (α): Property (α) (Rolewicz [6]): Given an element $f \in X^*$ such that ||f|| = 1 and $\varepsilon > 0$, let

$$S(f, \varepsilon) = \{x : x \in B_X, f(x) \ge 1 - \varepsilon\}.$$

The Kuratowski index of noncompactness $\alpha(A)$ of a subset A of X is defined as the infimum of all positive numbers r such that A can be

Received by the editors on November 27, 1990. AMS Subject Classification. 46B20, 46B10, 52A07. Key words and phrases. Reflexive Banach spaces, locally uniformly rotund.

Copyright ©1993 Rocky Mountain Mathematics Consortium