NON-HOMEOMORPHIC DISJOINT SPACES WHOSE UNION IS ω^*

W.W. COMFORT AND AKIO KATO

ABSTRACT. For certain pairs $\langle \alpha, \beta \rangle$ of cardinals we show that the Stone-Čech remainder $\omega^* = \beta(\omega) \backslash \omega$ can be written in the form $\omega^* = \cup_{\xi < \alpha} C_\xi$ where the spaces C_ξ are pairwise disjoint, pairwise non-homeomorphic, countably compact, and dense in ω^* , with each $|C_\xi| = \beta$. In specific cases the condition that the spaces $\{C_\xi : \xi < \alpha\}$ are non-homeomorphic may be strengthened, as follows:

- (i) $\alpha=2^{\mathbf{c}},\ c\leq\beta=\beta^{\omega}<2^{\mathbf{c}};\ \text{for }\xi<\alpha$ there is no one-to-one continuous function from C_{ξ} into $\cup_{\eta<\xi}C_{\eta}.$
- (ii) $\omega \leq \alpha \leq 2^{\mathbf{c}}$, $\beta = 2^{\mathbf{c}}$: for $\eta < \xi < \alpha$ there is no continuous function from C_{η} onto C_{ξ} .
- (iii) $1 \leq \alpha \leq 2^{\mathbf{c}}$, $\beta = 2^{\mathbf{c}}$: for $\xi < \alpha$ there is no one-to-one continuous function from C_{ξ} into $\omega^* \backslash C_{\xi}$.
- 1. **Preliminaries.** The symbol ω denotes the least infinite cardinal number and the countably infinite discrete topological space, and ω^* is the Stone-Čech remainder $\beta(\omega)\backslash \omega$. We consider only Tychonoff spaces, and we write $X \approx Y$ if X and Y are homeomorphic. The expression $X \subseteq_h Y$ means that X embeds into Y, i.e., there is $X' \subseteq Y$ such that $X \approx X'$.

For spaces X,Y and K with K compact and continuous $f:X\to Y\subseteq K$, the symbol \bar{f} denotes the continuous function $\bar{f}:\beta X\to K$ such that $f\subseteq \bar{f}$. In this context we will consider repeatedly the question whether or not a point $p\in\beta X\backslash X$ satisfies $\bar{f}(p)\in Y$. We note in this connection that the choice of the enveloping compact space K is irrelevant. That is, if K and L are compact spaces containing Y and if f is continuous from X into Y, then for each $p\in\beta X$ the function $f_K=f:X\to Y\subseteq K$ satisfies $\bar{f}_K(p)\in Y$ if and only if the function $f_L=f:X\to Y\subseteq L$ satisfies $\bar{f}_L(p)\in Y$.

Copyright ©1993 Rocky Mountain Mathematics Consortium

Received by the editors on December 16, 1990, and in revised form on April 30,

AMS-MOS Subject Classification. Primary 54A25, 54D40, Secondary 54D30, 04A20.

Key words and phrases. Stone-Čech remainder, disjoint union, Rudin-Frolík order, countably compact, extra countably compact, disjoint refinement lemma.