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SOME EXAMPLES OF MIXING RANDOM FIELDS
RICHARD C. BRADLEY

ABSTRACT. Several classes of strictly stationary random
fields are constructed, with various combinations of “strong
mixing” properties. The purpose is to “separate” various
mixing assumptions that are used in the literature on limit
theory for random fields.

1. Introduction. Suppose (2, F, P) is a probability space. For any
two o-fields A, B C F define the following measures of dependence:

a(A,B):= sup |P(ANB)— P(A)P(B)|,
AcA,BeB

p(A,B) :== sup |Corr (f, g)l,
feL2(A),9€L2(B)

I J
B(A,B) := sup % Z Z |P(A; N B;) — P(A;)P(By)|

where this last sup is taken over all pairs of partitions {4y,...,As}
and {Bi,...,By} of Q such that A; € A for each ¢ and B; € B for
each j. The following inequalities are elementary:

4a(A,B) < p(A,B) <1, and

1.1
(1.1) 2a(A,B) < B(A,B) < 1.

Suppose d is a positive integer. For each [ := (ly,...,l) € Z¢
denote the usual Euclidean norm ||I|| := (12 + .-+ +2)"/2. For any

two nonempty disjoint subsets S, T C Z¢, denote the distance between
them by
dist (S,T) := inf |[s —t]|.
seS,teT

)

Now suppose X := (X¢,t € Z%) is a strictly stationary random field
on our probability space (2, F, P). For each real number r > 1, and
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