ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 23, Number 3, Summer 1993

DEGREES OF CLOSED CURVES IN THE PLANE

MARKO KRANJC

ABSTRACT. In the present article we extend the notion of degree from regular closed curves to closed locally one-toone curves and prove that the extended notion has analogous properties. In particular, a natural generalization of Whitney-Graustein's theorem is still true. A proof of a mean value theorem for nonstop curves is given using only the elementary ideas of this paper.

1. Introduction. Let us first recall some important definitions.

A curve $C: I \to \mathbf{R}^2$ is *regular* if it is continuously differentiable and if $C'(t) \neq 0$ for all $t \in I$.

The map $H : I \times I \to \mathbf{R}^2$ is a regular homotopy if the curve $H_u(t) = H(u, t)$ is regular for each u and if both H_u and its derivative vary continuously with u. If H is a regular homotopy, then H_0 and H_1 are said to be regularly homotopic.

If $C: I \to \mathbf{R}^2$ is a (continuous) curve such that $C(t) \neq 0$ for all $t \in I$, then the winding number W(C) of C around 0 is defined as follows. Identify \mathbf{R}^2 with the complex plane, and write C as $C(t) = r(t)e^{2\pi i a(t)}$ where both r and a are continuous functions and r is positive. Let W(C) be the difference a(1) - a(0). If C is a closed curve W(C)is clearly an integer. W is also homotopy invariant in the following sense: if two curves $C_1, C_2: I \to \mathbf{R}^2$ are homotopic by a homotopy $H: I \times I \to \mathbf{R}^2 - \{0\}$ such that H_u , defined by $H_u(t) = H(u, t)$, is a closed curve for all $u \in I$, then $W(C_1) = W(C_2)$. The winding number of a curve counts the algebraic number of times the curve goes around the origin. If C is a closed curve it follows from the definition of the winding number that the vector C(t) points in every direction for at least |W(C)| different values of t. A very readable discussion of the winding number is given in [1].

If C Is a regular closed curve, then C' is a closed curve in \mathbb{R}^2 missing the origin. Therefore, W(C') can be defined. D(C) = W(C') is called

Received by the editors on June 1, 1990, and in revised form on January 2, 1992. AMS Subject Classification. 57N05.

Copyright ©1993 Rocky Mountain Mathematics Consortium