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DEGREES OF CLOSED CURVES IN THE PLANE

MARKO KRANJC

ABSTRACT. In the present article we extend the notion
of degree from regular closed curves to closed locally one-to-
one curves and prove that the extended notion has analogous
properties. In particular, a natural generalization of Whitney-
Graustein’s theorem is still true. A proof of a mean value
theorem for nonstop curves is given using only the elementary
ideas of this paper.

1. Introduction. Let us first recall some important definitions.

A curve C : I → R2 is regular if it is continuously differentiable and
if C ′(t) �= 0 for all t ∈ I.

The map H : I × I → R2 is a regular homotopy if the curve
Hu(t) = H(u, t) is regular for each u and if both Hu and its derivative
vary continuously with u. If H is a regular homotopy, then H0 and H1

are said to be regularly homotopic.

If C : I → R2 is a (continuous) curve such that C(t) �= 0 for all t ∈ I,
then the winding number W (C) of C around 0 is defined as follows.
Identify R2 with the complex plane, and write C as C(t) = r(t)e2πia(t)

where both r and a are continuous functions and r is positive. Let
W (C) be the difference a(1) − a(0). If C is a closed curve W (C)
is clearly an integer. W is also homotopy invariant in the following
sense: if two curves C1, C2 : I → R2 are homotopic by a homotopy
H : I × I → R2 − {0} such that Hu, defined by Hu(t) = H(u, t), is a
closed curve for all u ∈ I, then W (C1) = W (C2). The winding number
of a curve counts the algebraic number of times the curve goes around
the origin. If C is a closed curve it follows from the definition of the
winding number that the vector C(t) points in every direction for at
least |W (C)| different values of t. A very readable discussion of the
winding number is given in [1].

If C Is a regular closed curve, then C ′ is a closed curve in R2 missing
the origin. Therefore, W (C ′) can be defined. D(C) = W (C ′) is called

Received by the editors on June 1, 1990, and in revised form on January 2, 1992.
AMS Subject Classification. 57N05.

Copyright c©1993 Rocky Mountain Mathematics Consortium

951


