STRONGLY EXTREME POINTS IN KÖTHE-BOCHNER SPACES

H. HUDZIK AND M. MASTYŁO

ABSTRACT. The Kadec-Klee property with respect to a measure is discussed. A characterization of strongly extreme points of the unit sphere in certain Köthe-Bochner spaces is given.

1. Introduction. Let (Ω, Σ, μ) denote a measure space with σ -finite and complete measure μ and $L^0 = L^0(\Omega)$ denote the space of all (equivalence classes of) Σ -measurable real-valued functions, equipped with the topology of convergence in measure on μ -finite sets. In what follows, if $x, y \in L^0$, then $x \leq y$ means $x(t) \leq y(t)$ μ -almost everywhere in Ω

For any Banach space X we denote by S_X the unit sphere of X.

A Banach subspace E of L^0 is said to be a Köthe function space (over (Ω, Σ, μ)) if

- (i) $|x| \le |y|, x \in L^0, y \in E \text{ imply } x \in E \text{ and } ||x|| \le ||y||,$
- (ii) supp $E:=\cup\{\operatorname{supp} x:x\in E\}=\Omega,$ where supp $x=\{t\in\Omega:x(t)\neq 0\}.$

A Köthe function space E is said to be *order continuous* (respectively, monotone complete) provided $x_n \downarrow 0$ implies $||x_n|| \to 0$ (respectively $0 \le x_n \uparrow x, x \in E$ imply $||x_n|| \to ||x||$).

Let E be a Köthe function space on (Ω, Σ, μ) , X a Banach space. By E(X) we denote the Banach space of all (equivalence classes of) strongly measurable functions $f: \Omega \to X$ such that $\bar{f} = ||f(\cdot)||_X \in E$ equipped with the norm $||f|| = ||\bar{f}||_E$.

Let E be a Köthe function space over (Ω, Σ, μ) . E is said to have the (positive) Kadec-Klee property with respect to the measure μ (simply property (H_{μ}^{+}) , respectively, (H_{μ})), whenever $(x_n \stackrel{\mu}{\to} x, x_n, x \in E^{+})$ $x_n \stackrel{\mu}{\to} x$ and $||x_n|| \to ||x||$ imply $x_n \to x$ strongly. Here

Received by the editors on July 15, 1991.