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CONGRUENCE NETWORKS FOR STRONG
SEMILATTICES OF REGULAR SIMPLE SEMIGROUPS
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1. Introduction and summary. Normal cryptogroups (or normal
bands of groups) form the class of semigroups which are strong semi-
lattices of completely simple semigroups. We consider here the more
general class of semigroups which are strong semilattices of regular sim-
ple semigroups. We denote the latter by S = [Y;S,, ¢a,g] where Y is
a semilattice, for each v € Y, S, is a regular simple semigroup, and
for a > B, Yo : Sa — Sp is a homomorphism. These homomor-
phisms satisfy the usual conditions and determine the multiplication
of S. This is the semigroup on whose lattice of congruences C(S) we
consider certain operators.

A congruence p on S can be expressed by means of a congruence
aggregate (&;p,) where & € C(Y) and p, € C(S,) are congruences
satisfying certain conditions, and we write p ~ (&; po). We call glp = &
and loc p = (p,) the global and the local of p. These induce the global
relation G and the local relation £ on C(S) by

AGp <= glA=glp, ALp <= loc A =locp.

Our “global and local operators” are induced by the greatest and the
least elements of the equivalence classes of G and L as follows:

pG and pg are the greatest and the least elements G-related to p,
respectively,

pL and pl are the greatest and the least elements L-related to p,
respectively.

These produce the four operators G,g,L and [ on C(S). We are
interested in the semigroup generated by A = {G,g,L,l}. This
semigroup will be represented by generators and relations.

As for general regular semigroups, we define E(S) to be the set of
idempotents of .S,

kerp = {a € S| ape for some e € E(S)}
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