BLOW-UP BEHAVIOR FOR SEMILINEAR HEAT EQUATIONS: MULTI-DIMENSIONAL CASE

WENXIONG LIU

ABSTRACT. This paper is concerned with the Cauchy problem:

$$u_t - \Delta u = F(u),$$
 $(x,t) \in \mathbb{R}^N \times (0,T)$
$$u(x,0) = u_0(x)$$

where $u_0(x)$ is continuous, nonnegative and bounded, and $F(u)=u^p$ with p>1 or $F(u)=e^u$. Assume that u blows up at x=0 and t=T. In case $F(u)=u^p$, let $w(y,s)=(T-t)^{1/(p-1)}u(y(T-t)^{1/2},t), s=-\log(T-t)$. We study the large time behavior of w(y,s). In the radial case, we prove: if $w(y,s)\not\equiv\beta^\beta$ $(\beta=(p-1)^{-1})$, then either $w(y,s)=\beta^\beta(1-(2ps)^{-1}NH(y))+o(1/s)$ where $H(y)=(2N)^{-1}|y|^2-1$ or there exists an $m\geq 3$, $k_m>1$, constants C_i (not all zero) and polynomials $H_{m,i}$ of degree m, such that $w(y,s)=\beta^\beta(1-e^{(1-m/2)s})\sum_{i=1}^{k_m}C_iH_{m,i}(y))+o(e^{(1-m/2)s})$. The above convergence takes place in $C_{\rm loc}^2$ as well as in some weighted Sobolev space. For the nonradial solutions, we also obtain some results in the case N=2. Similar results also hold in the case $F(u)=e^u$.

1. Introduction. This paper is concerned with nonnegative blowing up solutions of the initial value problem:

(1.1)
$$u_t = \Delta u + F(u) \quad \text{in} \quad R^N \times (0, T)$$

(1.2)
$$u(x,0) = u_0(x), \qquad x \in \mathbb{R}^N$$

where $u_0(x)$ is continuous, nonnegative and bounded, and

(1.3)
$$F(u) = u^p \text{ with } p > 1, \text{ or } F(u) = e^u.$$

Copyright ©1993 Rocky Mountain Mathematics Consortium

Received by the editors on January 20, 1992, and in revised form on August 15,

¹⁹⁹¹ Mathematics Subject Classification. 35B40, 35K55, 35K47.

Key words and phrases. Semilinear heat equations, blow-up, asymptotic behavior.