TRIANGLE CENTERS AS FUNCTIONS

CLARK KIMBERLING

Abstract

We consider a kind of problem that appears to be new to Euclidean geometry, since it depends on an understanding of a point as a function rather than a position in a two-dimensional plane. Certain special points we call centers, including the centroid, incenter, circumcenter, and orthocenter. For example, the centroid, as a function of the class of triangles with sidelengths in the ratio $a_{1}: a_{2}: a_{3}$, is given by the formula $1 / a_{1}: 1 / a_{2}: 1 / a_{3}$. The kind of problem introduced here leads to functional equations whose solutions are centers.

1. Introduction. A triangle $\Delta A_{1} A_{2} A_{3}$ with respective sidelengths a_{1}, a_{2}, a_{3} and angles $\alpha_{1}, \alpha_{2}, \alpha_{3}$ (as in Figure 1) is often studied by means of homogeneous coordinates, as introduced by Möbius [6]; for a historical account, see Boyer [1]. In many discussions of triangles, homogeneous barycentric coordinates are preferred, but here we shall use homogeneous trilinear coordinates instead. The main reason for this choice is that our results depend on a formula for the distance between two points, and this formula (4a) is much shorter in trilinears than in barycentrics. Another reason is that a single reference (Carr [2]) gives many useful formulas in terms of trilinears, whereas no comparable reference seems to exist for barycentric formulas. Typical representations in trilinears, written as $x_{1}: x_{2}: x_{3}$ and defined in Section 2, are the following:

$$
\begin{aligned}
\text { centroid } & x_{1}: x_{2}: x_{3}=1 / a_{1}: 1 / a_{2}: 1 / a_{3} \\
\text { circumcenter } & x_{1}: x_{2}: x_{3}=a_{1}\left(a_{2}^{2}+a_{3}^{2}-a_{1}^{2}\right): a_{2}\left(a_{3}^{2}+a_{1}^{2}-a_{2}^{2}\right): \\
& a_{3}\left(a_{1}^{2}+a_{2}^{2}-a_{3}^{2}\right)=\cos \alpha_{1}: \cos \alpha_{2}: \cos \alpha_{3} \\
\text { circumcircle } & a_{1} / x_{1}+a_{2} / x_{2}+a_{3} / x_{3}=0 \\
\text { Euler line } & x_{1} \sin 2 \alpha_{1} \sin \left(\alpha_{2}-\alpha_{3}\right)+x_{2} \sin 2 \alpha_{2} \sin \left(\alpha_{3}-\alpha_{1}\right) \\
& +x_{3} \sin 2 \alpha_{3} \sin \left(\alpha_{1}-\alpha_{2}\right)=0
\end{aligned}
$$

[^0]
[^0]: Received by the editors on March 26, 1992, and in revised form on August 24, 1992.

