CYCLIC OPERATORS ON SHIFT COINVARIANT SUBSPACES

STEVEN M. SEUBERT

ABSTRACT. Let ψ be a Blaschke product on the unit disk and denote by P_{ψ} the orthogonal projection of H^2 onto $H^2\theta\psi H^2$. Necessary and sufficient conditions for the adjoint $\{P_{\psi}T_{\phi}P_{\psi}\}^*$ of the compression of an analytic Toeplitz operator $T_{\phi}: F \to \phi F$ to $H^2\theta\psi H^2$ to be cyclic are given.

1. Introduction. Let H^2 and H^{∞} denote the standard Hardy spaces on the unit disk $\mathbf{D} \equiv \{z \in \mathbf{C} : |z| < 1\}$. The standard unilateral shift S on H^2 is given by $S : F(z) \to zF(z)$.

For each function ϕ in H^{∞} , the analytic Toeplitz operator T_{ϕ} with symbol ϕ is a bounded linear operator on H^2 defined by $T_{\phi}: F \to \phi F$. The commutant of the shift operator S on H^2 is precisely the algebra $\{T_{\phi}: \phi \text{ is in } H^{\infty}\}$ of analytic Toeplitz operators. In [8], Wogen showed that there exists a fixed function in H^2 which is a cyclic vector for the adjoint T_{ϕ}^* of every analytic Toeplitz operator T_{ϕ} having nonconstant symbol ϕ (see Wogen [8, Theorem 1, p. 163]).

Let ψ be an inner function on the unit disk and denote by P_{ψ} the orthogonal projection of H^2 onto $H^2\theta\psi H^2$. Let ϕ be any function in H^{∞} . The compression $P_{\psi}T_{\phi}P_{\psi}$ of the analytic Toeplitz operator T_{ϕ} to the shift coinvariant subspace $H^2\theta\psi H^2$ is given by

(1)
$$P_{\psi}T_{\phi}P_{\psi}: F \to P_{\psi}(\phi F).$$

For $\phi(z)=z$, the operator $S_{\psi}\equiv P_{\psi}T_{\phi}P_{\psi}$ is the compression of the shift operator S to $H^2\theta\psi H^2$. Sarason has shown that a bounded linear operator T on $H^2\theta\psi H^2$ commutes with S_{ψ} if and only if T assumes the form (1) for some function ϕ in H^{∞} (see Sarason [5, Theorem 1, p. 179]). Nikolskii points out that it would be of interest to determine those functions ϕ in H^{∞} for which $P_{\psi}T_{\phi}P_{\psi}$ and $\{P_{\psi}T_{\phi}P_{\psi}\}^*$ are cyclic (see [4]). Incidental results have been obtained for the case

Received by the editors on September 14, 1991, and in revised form on December 3, 1992.