ON TWO EXTREMAL PROBLEMS RELATED TO UNIVALENT FUNCTIONS

RICHARD FOURNIER AND STEPHAN RUSCHEWEYH

ABSTRACT. For an integrable $\Lambda: [0,1] \to \mathbf{R}$, nonnegative on (0,1), and $f \in \mathcal{S}$, the class of normalized univalent functions in the unit disk \mathbf{D} , we are interested in the functional

$$L_{\Lambda}(f) := \inf_{z \in \mathbf{D}} \int_{0}^{1} \Lambda(t) \left(\operatorname{Re} \frac{f(tz)}{tz} - \frac{1}{(1+t)^{2}} \right) dt,$$

and, in particular, in $L_{\Lambda}(\mathcal{S}) := \inf_{f \in \mathcal{S}} L_{\Lambda}(f)$. Note that $L_{\Lambda}(\mathcal{S}) \leq 0$ for every Λ . We show that $L_{\Lambda}(f) \geq 0$ for f close-to-convex and a set of functions Λ containing $\Lambda_c(t) := (1-t^c)/c, c \in (-1,2]$. This result turns out to be instrumental for our solution of the following problem: find the best (least) bound β_c so that for each $g \in \mathcal{H}(\mathbf{D})$ with g(0) = 0, g'(0) = 1, $\text{Re}\left[e^{i\alpha}(g'(z)-\beta)\right] > 0$ in \mathbf{D} with $\beta \geq \beta_c$ the function

$$(c+1)\int_0^1 t^{c-1}g(tz)\,dt, \qquad z \in \mathbf{D},$$

is starlike univalent in **D**. Weaker bounds for β_c have been obtained by a number of authors (cf. Ali [1], Nunokawa [6]). We are using the duality principle for Hadamard products to obtain our results.

1. Introduction and statement of the results. Let S denote the set of univalent functions f in the unit disk \mathbf{D} , normalized by f(0) = 0, f'(0) = 1. The Koebe distortion theorem then states that, for $f \in S$,

$$\frac{1}{(1+|z|)^2} \le \left| \frac{f(z)}{z} \right| \le \frac{1}{(1-|z|)^2}, \qquad |z| < 1.$$

Generally, however, we do not have

(1)
$$\frac{1}{(1+|z|)^2} \le \operatorname{Re}\frac{f(z)}{z},$$

Received by the editors on October 15, 1992, and in revised form on November 24, 1992.

^{24, 1992.}This work was carried out while the first author was visiting Würzburg University, and was supported by an ACC (Quebec) grant.