ON A SUBCLASS OF STARLIKE FUNCTIONS

ROSIHAN MOHAMED ALI

ABSTRACT. Let $R(\beta)$ denote the class of functions $f(z)=z+a_2z^2+\cdots$ which are analytic in the unit disc $D=\{z:|z|<1\}$ and satisfy the condition $\operatorname{Re}(f'(z)+zf''(z))>\beta$, $\beta<1$, for $z\in D$. We find β so that $R(\beta)$ is a subclass of S^* , the class consisting of univalent starlike functions in D.

1. Introduction. Let A denote the class of functions f which are analytic in the unit disc $D = \{z : |z| < 1\}$ and normalized so that f(0) = f'(0) - 1 = 0. Let S be the subclass of A consisting of univalent functions and let K and S^* denote the usual subclasses of S whose members are convex and starlike, respectively. For $\beta < 1$, let

$$R(\beta) = \{ f \in A : \text{Re}(f'(z) + zf''(z)) > \beta, \ z \in D \}.$$

The class R(0) will simply be denoted by R. Chichra [1] proved that if $f \in R$, then for $z \in D$, $\operatorname{Re} f'(z) > 0$, and hence $R \subset S$. Singh and Singh [7] showed that $f \in R$ would imply $f \in S^*$ and Krzyz [2] gave an example to show that R is not a subset of K.

Let

$$\beta_S = \inf \{ \beta : R(\beta) \subset S \},$$

and

$$\beta_{S^*} = \inf \{ \beta : R(\beta) \subset S^* \}.$$

In a later paper, Singh and Singh [8] showed that $\beta_{S^*} \leq -1/4$. More recently, the estimate on β_{S^*} was further improved by Nunokawa and Thomas [3]. They proved that $R(\beta_0) \subset S^*$ if β_0 satisfies the equation

$$3\beta + (1 - \beta)(2 - \log(4/e))\log(4/e) = 0,$$

Copyright ©1994 Rocky Mountain Mathematics Consortium

Received by the editors on September 12, 1991, and in revised form on June 5, 1992.