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CARLESON’S INEQUALITY
AND QUASICONFORMAL MAPPINGS

CRAIG A. NOLDER

1.1. Introduction. In his work on the interpolation of analytic
functions Carleson characterized certain measures on the unit disc by
means of LP-integral inequalities for functions in HP. Duren extended
Carleson’s theorem to exponents 0 < p < g < co. We prove here
analogues of these results for quasiconformal mappings in R".

We denote the unit ball in n-dimensional Euclidean space, R™, by B",
and S™~! denotes its boundary. The open ball centered at € R"™ of
radius 7 is denoted B(z,r). We assume throughout that u is a positive
measure on B™. We call y a t-Carleson measure, 0 < ¢t < oo, if there
exists a constant N(u) such that

(1.2) w(B(s,r) N B") < N(u)rt=1

forall s € S" ! and all 0 < 7 < co. When n = 2 and ¢ = 1, this is
Carleson’s original definition [3].

The main result of this paper, Theorem 1.3, is a quasiconformal
analogue of results of Carleson [3] and Duren [4] concerning analytic
functions. To obtain this result, we use certain integral inequalities for
the nontangential maximal function given in [1] and [8].

When f: B® — R™ is measurable and 0 < p < oo, we write

1/p
7]/ 2e = limsup ( / If(TS)I”dU(S)>
r—1 Sn—1

where do is the surface area measure on S™ .

We use here the usual definition of a K-quasiconformal mapping as
defined in [7].

Theorem 1.3. Suppose that 0 < p < g < co. If t =¢q/p and if

(1.4) w is a t-Carleson measure,
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