CARLESON'S INEQUALITY AND QUASICONFORMAL MAPPINGS

CRAIG A. NOLDER

1.1. Introduction. In his work on the interpolation of analytic functions Carleson characterized certain measures on the unit disc by means of L^p -integral inequalities for functions in H^p . Duren extended Carleson's theorem to exponents $0 . We prove here analogues of these results for quasiconformal mappings in <math>\mathbf{R}^n$.

We denote the unit ball in n-dimensional Euclidean space, R^n , by B^n , and S^{n-1} denotes its boundary. The open ball centered at $x \in R^n$ of radius r is denoted B(x,r). We assume throughout that μ is a positive measure on B^n . We call μ a t-Carleson measure, $0 < t < \infty$, if there exists a constant $N(\mu)$ such that

for all $s \in S^{n-1}$ and all $0 < r < \infty$. When n = 2 and t = 1, this is Carleson's original definition [3].

The main result of this paper, Theorem 1.3, is a quasiconformal analogue of results of Carleson [3] and Duren [4] concerning analytic functions. To obtain this result, we use certain integral inequalities for the nontangential maximal function given in [1] and [8].

When $f: B^n \to R^m$ is measurable and 0 , we write

$$||f||_{H^p}=\limsup_{r o 1} \left(\int_{S^{n-1}} |f(rs)|^p \,d\sigma(s)
ight)^{1/p}$$

where $d\sigma$ is the surface area measure on S^{n-1} .

We use here the usual definition of a K-quasiconformal mapping as defined in [7].

Theorem 1.3. Suppose that
$$0 . If $t = q/p$ and if (1.4) μ is a t-Carleson measure,$$

Copyright ©1994 Rocky Mountain Mathematics Consortium

Received by the editors on February 21, 1990, and in revised form on December 18, 1992.