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ON THE EXISTENCE OF TANGENT HYPERPLANES
TO FULL SUBLATTICES OF EUCLIDEAN SPACE

GERHARD GIERZ AND ALBERT R. STRALKA

ABSTRACT. Let L be a full sublattice of Euclidean n-
space. We study those points in the boundary of L where
L admits a tangent hyperplane. The main result states
that this collection of points is dense in the boundary of L.
This theorem is a generalization of the well-known fact that
monotone increasing real-valued functions are differentiable
almost everywhere.

1. Introduction. A standard result in analysis states that mono-
tone increasing real-valued functions are differentiable almost every-
where. In other words, if f : [0,1] — R is a monotone (upper semi-
continuous) function, and if L = {(z,y) € [0,1]*> : y < f(z)} is the
subgraph of f, then the set of points where we can assure the existence
of a tangent line to L is dense in the boundary of L. In this note we will
extend this result to full sublattices: A sublattice L C R™ is called full,
provided that the interior L° of L is connected and dense in L. Full
sublattices of R™ were first introduced and studied in greater detail
in [2] and [3]. If L is such a full sublattice, then the points p in the
boundary of L where L admits a tangent hyperplane is dense in the
boundary OL of L. Such a point p € L will be called a Ci-point. The
property of being a C;-point is not an intrinsic property of the point
p € OL; it rather depends on the particular imbedding of L into R™.
On the other hand, there are certain points p € 0L that do not admit
a tangent plane under any imbedding of L into R™.

Another related result is S. Mazur’s theorem [5] which states that a
closed convex set with dense interior in a separable Banach space has
a dense set of points of Ci-points in the boundary. From a point of
view of order theory, convex sets typically stand at the opposite side
of distributivity. So one might hope that there is a generalization of
Mazur’s result to abstract convex structures along the lines studied by
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