THE CAUCHY FUNCTION FOR nTH ORDER LINEAR DIFFERENCE EQUATIONS

ALLAN PETERSON AND JOHN SCHNEIDER

In this paper we will be concerned with the Cauchy function for the nth order linear difference equation

(1)
$$Ly(t) \equiv \sum_{i=0}^{n} p_i(t)y(t+i) = 0$$

where t is an integer variable, and we assume that

$$p_0(t)p_n(t) \neq 0$$
,

for all integers t. We assume the coefficients $p_i(t)$, $0 \le i \le n$, are real valued functions defined on the integers. The Cauchy function K(t,s), for each fixed integer s, is defined to be the solution of the initial value problem (1),

$$K(s+k,s) = 0,$$
 $1 \le k \le n-1,$
 $K(s+n,s) = \frac{1}{p_n(s)}.$

Let a be an integer. Then it is well known that the solution for the initial value problem,

$$\sum_{i=0}^{n} p_i(t)y(t+i) = f(t), \qquad t \ge a$$
$$y(a+k) = 0, \qquad 0 \le k \le n-1$$

is given by

$$y(t) = \sum_{s=a}^{t-1} K(t,s) f(s).$$

Assume that we can factor (1) in the form

$$Ly(t) = MNy(t) = 0$$

Received by the editors on September 24, 1992.

Copyright ©1995 Rocky Mountain Mathematics Consortium