A GEOMETRIC CHARACTERIZATION OF THE WEAK-RADON NIKODYM PROPERTY IN DUAL BANACH SPACES

V. FARMAKI

ABSTRACT. We give a geometric characterization of convex, weak*-compact subsets of a dual Banach space with the weak-Radon Nikodym property as those sets in which every closed, convex subset is the weak*-closed convex hull of its x^{**} -weak*-strongly exposed points for each element x^{**} of X^{**} .

1. Introduction. After the characterization by Musial [9] and Janicka [8] of dual Banach spaces with the weak-Radon Nikodym property (that is, the Radon-Nikodym property for the Pettis integral) as the spaces with predual not containing l_1 , many characteristic properties for the weak*-compact subsets of such spaces were proved (see [7, 12]). Many of these properties localized to provide equivalent properties for weak*-compact subsets of dual spaces [6, 10, 11, 13].

A convex, weak*-compact subset K of a dual Banach space X^* has the weak-Radon Nikodym property (w-RNP) if and only if it is a Pettis set $[\mathbf{5},\ \mathbf{13}]$ or equivalently if it is weakly fragmented $[\mathbf{5}]$ (K is weakly fragmented if for every nonempty, w^* -compact subset F of $K, \varepsilon > 0$ and $x^{**} \in X^{**}$ there exists a nonempty, relatively open subset U of (F,w^*) such that $O(x^{**},U)<\varepsilon$). Also, characteristic properties of a convex, weakly fragmented set K are that the norm-closed convex hull of F is equal to the weak*-closed convex hull of F for every weak*-compact subset F of K and that every convex, weak*-compact subset F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed conv

In this paper (see Theorem 8) we give a geometric characterization of convex, weak*-compact, with the w-RNP subsets of a dual Banach space as those sets in which every weak*-compact, convex subset is the weak*-closed convex hull of its x^{**} -weak*-strongly exposed points for each element x^{**} of X^{**} . An extreme point x^{*} of K is an x^{**} -weak*-strongly exposed point of K for some x^{**} in X^{**} if there exists

Received by the editors on November 1, 1992.