HIGHER ORDER UNIFORMLY GÂTEAUX DIFFERENTIABLE NORMS ON ORLICZ SPACES

R.P. MALEEV

ABSTRACT. Equivalent α_M -times uniformly Gâteaux differentiable norms are constructed for large classes of Orlicz spaces $L_M(S, \Sigma, \mu)$. Especially, for the spaces $L_{2p-1}(0, 1)$, $p \in \mathbb{N}$, equivalent (2p-1)-uniformly Gâteaux smooth norms are found.

1. Introduction. The existence of smooth bump functions on a Banach space is of some importance in many problems of the nonlinear analysis. At the end of the 1980s, several deep results of Deville [2, 3] showed that the existence of higher order differentiable bumps also has geometrical implications.

The problem of the best order of Fréchet differentiability of bump functions was solved for L_p -spaces in $[\mathbf{1},\ \mathbf{12}]$ and for Orlicz sequence spaces in $[\mathbf{9},\ \mathbf{10}]$. Especially, it is shown $[\mathbf{1}]$ that in $l_p,\ p$ odd, there is no p-times Fréchet differentiable bump and $[\mathbf{9}]$ that in $l_M,\alpha_M^0\in\mathbf{N}$, there is no α_M^0 -times Fréchet differentiable bump, excepting the case where α_M^0 is even and M is equivalent to $t_M^{\alpha^0}$ at 0.

On the other hand, in a Banach space, a norm of some order of smoothness generates a bump with the same order of smoothness and therefore every positive result on the existence of a smooth equivalent norm is transferred directly for bumps. In [11] equivalent p-times Gâteaux differentiable norms are found in L_p over σ -finite measure space, p odd. Our aim is to generalize and sharpen this result for Orlicz sequence spaces l_M (function spaces $L_M(0,1)$) with $\alpha_M^0(\alpha_M^\infty)$ a positive integer and M not equivalent to $t^{\alpha_M^0}(t^{\alpha_M^\infty})$ at $0(\infty)$.

2. Preliminaries. We begin with some notations and definitions. In what follows X and Y are Banach spaces, S_X and B_X the unit sphere

Mathematics Subject Classification. Primary 46B20, 46B25. Key words. Orlicz spaces, Gâteaux differentiability, smoothness.

Copyright ©1995 Rocky Mountain Mathematics Consortium

Received by the editors on April 20, 1993. Research partially supported by SRF of the Bulgarian Ministry of science and education, contract no. MM-3/1992.