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TOPOLOGICAL NEARRINGS
WHOSE ADDITIVE GROUPS ARE TORI

K.D. MAGILL, JR.

1. Introduction. A nearring is a triple (N,+,*) where (N, +)
is a group, (N, x) is a semigroup and (z 4+ y) x z = (z * 2) + (y * 2)
for all z,y,z € N. For information about the algebraic theory of
nearrings, one may consult [4, 8 and 9]. If the binary operations
+ and * are continuous, then (IV, +, %) is a topological nearring. This
paper was motivated by the following question, “Given a topological
group (G, +), exactly what are the continuous multiplications * on G
such that (G,+,x*) is a topological nearring?” The answer, it turns
out, involves knowing just what the continuous functions are from
G into the space of endomorphisms of G under the compact-open
topology. We apply this general result, which is a topological version
of a theorem of J.R. Clay [2] to the n-dimensional torus 7™ and we are
able to completely describe those multiplications * so that (T, +, %)
is a topological nearring. One reason that the case for T" follows so
quickly is that there are, in a certain sense, few continuous maps from
T™ into its space of endomorphisms. The case is far different, however,
for the Euclidean n-groups. There are many continuous functions from
R™ into its space of endomorphisms and, consequently, the operations x*
for which (R™,+, %) is a topological nearring are much more abundant
and varied. We will begin our investigation of continuous nearring
multiplications on R™ in a subsequent paper. In this paper, after we
derive the general result, we focus entirely on applications to the n-
dimensional torus. The main results of the paper are in Section 2 where
we derive the general result and then apply it to the n-dimensional torus
in order to explicitly describe all the continuous multiplications % on T™
such that (7™, +, %) is a topological nearring. After we describe these
multiplications in Section 2, we derive a few corollaries and then we
determine the ideals of each such nearring. In Section 3 we determine
all the homomorphisms from one such nearring into another, and we
describe the endomorphism semigroups and the automorphism groups
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