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ASPLUND SPACES AND DECOMPOSABLE
NONSEPARABLE BANACH SPACES

GILLES GODEFROY

ABSTRACT. We show that an Asplund space of density
character Nj is weakly compactly generated if and only if it
has a projectional resolution of identity for each equivalent
norm. We show that every nonseparable Asplund space has a
nonseparable subspace which has an equivalent strictly convex
norm. We give an example of a non-Asplund space such that
every bounded weakly closed subset is an intersection of finite
union of balls. We show the existence of an Eberlein compact
K such that (C(K),||.||cc) has no A-norming Markushevich
basis if A < 2.

0. Introduction. In this note we investigate some properties
of the nonseparable Banach spaces which admit a “decomposition”
into separable subspaces. We show, for instance, that there exists a
weakly compactly generated (wcg) Banach space X with no A-norming
Markushevich basis for A < 2, and in fact that there exists an Eberlein
compact K such that (C(K),||.||cc) has this property. This improves
some results from [18]. We also answer a question from [8].

Let us recall some notation. Let X be a Banach space of density
character dens(X) = u. A “decomposition” of X is a well-ordered
collection {P,;wo < a < p} of projections such that P,P3 = PP, =
P,ifa <B,P,=Idx, Ps(z) € {Pati(z);a < B} forall z € X and 3,
and dens (P, (X)) < |a] for all a. The decomposition {Py;wp < o < p}
is called a projectional resolution of identity (PRI) if ||P,|| < 1 for all
a. It is called a separable decomposition if (Py41 — P,)(X) is separable
for all o < p.

Jayne-Rogers selectors were shown to exist in [13] (see [2, Chapter
I.4]). They are multivalued maps from Asplund spaces X to the set
(X*)N of countable subsets of X*. We denote them by A. A subset
Y C X* is called (A)-norming if there exists A < co such that

||zl < Asup{|f(z)|; f € Y |[f]] < 1}
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