ASPLUND SPACES AND DECOMPOSABLE NONSEPARABLE BANACH SPACES

GILLES GODEFROY

ABSTRACT. We show that an Asplund space of density character \aleph_1 is weakly compactly generated if and only if it has a projectional resolution of identity for each equivalent norm. We show that every nonseparable Asplund space has a nonseparable subspace which has an equivalent strictly convex norm. We give an example of a non-Asplund space such that every bounded weakly closed subset is an intersection of finite union of balls. We show the existence of an Eberlein compact K such that $(\mathcal{C}(K),||.||_{\infty})$ has no λ -norming Markushevich basis if $\lambda < 2$.

0. Introduction. In this note we investigate some properties of the nonseparable Banach spaces which admit a "decomposition" into separable subspaces. We show, for instance, that there exists a weakly compactly generated (wcg) Banach space X with no λ -norming Markushevich basis for $\lambda < 2$, and in fact that there exists an Eberlein compact K such that $(\mathcal{C}(K), ||.||_{\infty})$ has this property. This improves some results from [18]. We also answer a question from [8].

Let us recall some notation. Let X be a Banach space of density character dens $(X) = \mu$. A "decomposition" of X is a well-ordered collection $\{P_{\alpha}; \omega_0 \leq \alpha \leq \mu\}$ of projections such that $P_{\alpha}P_{\beta} = P_{\beta}P_{\alpha} = P_{\alpha}$ if $\alpha \leq \beta$, $P_{\mu} = \operatorname{Id}_X$, $P_{\beta}(x) \in \{P_{\alpha+1}(x); \alpha < \beta\}$ for all $x \in X$ and β , and dens $(P_{\alpha}(X)) \leq |\alpha|$ for all α . The decomposition $\{P_{\alpha}; \omega_0 \leq \alpha \leq \mu\}$ is called a projectional resolution of identity (PRI) if $||P_{\alpha}|| \leq 1$ for all α . It is called a separable decomposition if $(P_{\alpha+1} - P_{\alpha})(X)$ is separable for all $\alpha < \mu$.

Jayne-Rogers selectors were shown to exist in [13] (see [2, Chapter I.4]). They are multivalued maps from Asplund spaces X to the set $(X^*)^{\mathbf{N}}$ of countable subsets of X^* . We denote them by Δ . A subset $Y \subset X^*$ is called (λ) -norming if there exists $\lambda < \infty$ such that

$$||x|| \le \lambda \sup\{|f(x)|; f \in Y, ||f|| \le 1\}$$

Received by the editors on July 10, 1993.

Copyright ©1995 Rocky Mountain Mathematics Consortium