BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 25, Number 3, Summer 1995

ON THE TRUNCATION OF FUNCTIONS IN LORENTZ AND MARCINKIEWICZ SPACES

J. APPELL AND E.M. SEMENOV

ABSTRACT. Given a measurable function x on [0, 1], we study the family Q(x) of all quasi-concave functions ψ such that $||x_h||_{M(\psi)} = o(||x_h||_{\Lambda(\psi)})$ as $h \to \infty$, where x_h denotes the truncation of x at height h. We show, in particular, that Q(x) is nonempty if and only if $x \in L_1 \setminus L_\infty$.

Recall that a Banach space E of measurable functions on [0, 1] is called symmetric space or rearrangement invariant (r.i.) space if the following holds:

(a) from $|x(t)| \leq |y(t)|$ and $y \in E$ it follows that $x \in E$ and $||x||_E \le ||y||_E;$

(b) if x is equi-measurable to $y \in E$, then $x \in E$ and $||x||_E = ||y||_E$.

Denote by χ_e the characteristic function of a measurable set $e \subseteq [0, 1]$. By (b), the norm $||\chi_e||_E$ depends only then on the measure μe of e. Consequently, the function $\varphi_E : [0,1] \to [0,\infty)$ given by $\varphi_E(\mu e) =$ $||\chi_e||_E$ (the so-called fundamental function of E) is well-defined.

Examples of r.i. spaces are the classical Lebesgue, Orlicz, Lorentz and Marcinkiewicz spaces. Denote by Ω the set of all quasi-concave functions $\psi: [0,1] \to [0,\infty)$, i.e., $\psi(0) = 0$, and both functions $t \mapsto \psi(t)$ and $t \mapsto t/\psi(t)$ are increasing. Given $\psi \in \Omega$, let

(1)
$$||x||_{\Lambda(\psi)} = \int_0^1 x^*(t) \, d\psi(t)$$

and

(2)
$$||x||_{M(\psi)} = \sup_{0 < \tau \le 1} \frac{\psi(\tau)}{\tau} \int_0^\tau x^*(t) dt$$

where $x^{*}(t)$ denotes the decreasing rearrangement of |x(t)|. The space $\Lambda(\psi)$ defined by the norm (1) is usually called *Lorentz space*, the space

Received by the editors on December 22, 1992. 1991 Mathematics Subject Classification. 46E30, 47A57.

Copyright ©1995 Rocky Mountain Mathematics Consortium