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SPECTRUM WHERE THE BOUNDARY OF
THE NUMERICAL RANGE IS NOT ROUND

MATTHIAS HUBNER

ABSTRACT. For a bounded linear operator A on a complex
Hilbert space, we prove that the boundary points of the
numerical range W (A) with infinite curvature of the convex
boundary curve are included in the spectrum of both A and
A*. If, additionally, W(A) is closed, then the ‘non-round’
boundary points are eigenvalues of A and A*.

The numerical range W (A) of the operator A is defined as the set
of complex numbers (Au,u) where u runs through the vectors of norm
1. The basic fact concerning numerical range is the Toeplitz-Hausdorff
theorem which states that the numerical range of a bounded linear
operator on a Hilbert space H is convex [2]. The closure W(A) of
the numerical range contains the spectrum of A, is convex too and is
compact because of boundedness of the operator A. The boundary of
W(A) is a Jordan curve and will be called C(A). For some related
material on the numerical range of operators, see [3, 4].

Convex compact sets have enough extreme points and we would like
to ask whether extreme points of W (A) belong to the spectrum. The

example
0 1
(0 0)

on a 2-dimensional Hilbert space shows that this is not necessarily
so; the matrix is nilpotent, has spectrum {0} and numerical range
equal to the closed disk with center 0 and radius 1/2. On the other
hand, Donoghue considered in [1] the corners, which are the points of
C(A) N W (A) where C(A) fails to have a unique tangent, and proved
that they are eigenvalues of A. For normal operators, where we can use
the spectral theorem, it is easy to prove that W (A) equals the convex
hull of the spectrum.

Our proposal to generalize Donoghue’s result is to consider points
where C'(A) is not round, i.e., where the curvature is infinite. To be
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