COVERING CONGRUENCES IN HIGHER DIMENSIONS

TODD COCHRANE AND GERRY MYERSON

Abstract

We construct a set of covering congruences for the set of all ordered pairs of integers.

Erdős popularized the notion of a set of covering congruences (hereinafter, a cover $)$. This is a finite set $\left(a_{1}, m_{1}\right), \ldots,\left(a_{r}, m_{r}\right)$ of ordered pairs of integers with $1<m_{1}<\cdots<m_{r}$ such that every integer x satisfies at least one of the congruences $x \equiv a_{j}\left(\bmod m_{j}\right)$. The simplest example is $(0,2),(0,3),(1,4),(1,6),(11,12)$.

It is obvious that there does not exist a homogeneous cover, that is, one in which $a_{j}=0$ for all j (what homogeneous congruence is satisfied by 1?). Our purpose is to show that there is a homogeneous cover for the group of all ordered pairs of integers, that is,

Theorem. There is a finite set of ordered triples $\left(a_{1}, b_{1}, m_{1}\right), \ldots$, $\left(a_{r}, b_{r}, m_{r}\right)$ with $1<m_{1}<\cdots<m_{r}$ and with $G C D\left(a_{j}, b_{j}, m_{j}\right)=1$ for all j such that every pair of integers (x, y) satisfies at least one of the congruences $a_{j} x-b_{j} y \equiv 0\left(\bmod m_{j}\right)$.

The GCD condition is needed to weed out covers such as $(1,0,2)$, $(2,2,4),(0,3,6)$, in which repeated moduli are disguised by common factors. The theorem may not be too surprising, in view of the obvious correspondence between the one-variable congruence $x \equiv a(\bmod m)$ and the two-variable homogeneous congruence $x-a y \equiv 0(\bmod m)$. But this correspondence, applied directly to a cover of the integers, does not produce a homogeneous cover of ordered pairs (at any rate, we don't see how it does), so a further idea is necessary. Such an idea is contained in Lemma 1, below.

Covering congruences in higher dimensions are discussed by Schinzel [6] and Fabrykowski [2]. Porubský [5] published a thorough survey of

[^0]
[^0]: Received by the editors on April 8, 1994, and in revised form on September 5, 1994.

 1991 Mathematics Subject Classification. 11A07, 11B25.
 Key words and phrases. Covering congruences.

