QUATERNIONIC BUNDLES ON ALGEBRAIC SPHERES

RICHARD G. SWAN

ABSTRACT. It is shown that for $n \geq 4$ there are nonfree rank 1 algebraic quaternionic vector bundles on the n-sphere which are topologically trivial. For $n \geq 5$ it is shown that there are uncountably many such bundles.

1. Introduction. An old question asks whether there is a bijection between algebraic and topological vector bundles on spheres. More precisely, let \mathbf{F} be one of \mathbf{R} , \mathbf{C} and \mathbf{H} , and let $VB_k^{\mathbf{F}}(S^n)$ be the set of isomorphism classes of topological \mathbf{F} -vector bundles of rank k on the n-sphere S^n . Let $A_n = \mathbf{R}[x_0, \ldots, x_n]/(\sum x_i^2 - 1)$ be the coordinate ring of S^n , and let $P_k(\mathbf{F} \otimes_{\mathbf{R}} A_n)$ be the set of isomorphism classes of finitely generated projective $\mathbf{F} \otimes_{\mathbf{R}} A_n$ -modules of rank k. The question then is whether $P_k(\mathbf{F} \otimes_{\mathbf{R}} A_n) \to VB_k^{\mathbf{F}}(S^n)$ is a bijection.

The following results are known about this question.

- (1) [16]. The stable version of the conjecture is true, i.e., $K_0(\mathbf{F} \otimes_{\mathbf{R}} A_n) \to K^0_{\mathbf{F}}(S^n)_{\text{top}}$ is an isomorphism for all n and for $\mathbf{F} = \mathbf{R}, \mathbf{C}$, or \mathbf{H} .
- (2) [17]. The conjecture is true if A_n is replaced by the localization $(A_n)_S$ where $S = \{1 + f_1^2 + \cdots + f_s^2 \mid f_i \in A_n, s \geq 0\}$.
 - (3) [15]. For $\mathbf{F} = \mathbf{R}$ or \mathbf{C} , it is true for $k \leq 1$ and all n.
 - (4) [1] (see also [14]). If $\mathbf{F} = \mathbf{R}$, it is true for $n \leq 2$.
 - (4) (Murthy, see [15]). If $\mathbf{F} = \mathbf{C}$, it is true for $n \leq 3$.
 - (5) [15]. If $\mathbf{F} = \mathbf{H}$ it is true for $n \leq 1$ (and also for k = 0 and all n).

Case (6) was observed by the referee of [15] who remarked that $\mathbf{H} \otimes_{\mathbf{R}} A_1$ is a principal ideal domain [12, Theorem 5.3] (see also Corollary 5.2).

Received by the editors on May $1\overline{1}$, 1994, and in revised form on October 10,

¹⁹⁹¹ AMS Mathematics Subject Classification. Primary 16A50, Secondary 14F05, 55R25.

Key words and phrases. Quaternions, projective modules, algebraic vector bundles.

Partly supported by the NSF.