ON CONVERGENCE OF CONDITIONAL EXPECTATION OPERATORS

C. BRYAN DAWSON

ABSTRACT. Given an operator $T:U_X(\Sigma)\to Y$ or $T:C(H,X)\to Y$, one may consider the net of conditional expectation operators (T_π) directed by refinement of the partitions π . It has been shown previously that (T_π) does not always converge to T. This paper gives several conditions under which this convergence does occur, including complete characterizations when $X=\mathbf{R}$ or when X^* has the Radon-Nikodým property.

1. Introduction. It is well known that if $T:U_X(\Sigma)\to Y$ is a bounded linear operator, where $U_X(\Sigma)$ is the uniform closure of the X-valued Σ -simple functions, then there is a unique finitely additive set function $m:\Sigma\to L(X,Y)$ with finite semi-variation such that $T(f)=\int f\ dm$ for all $f\in U_X(\Sigma)$. Also, if $T:C(H,X)\to Y$, there is a unique weakly regular $m:\beta(H)\to L(X,Y^{**})$ such that $T(f)=\int f\ dm$ for $f\in C(H,X)$. In each case $\tilde{m}(H)=||T||$. Given such an operator T, a finite partition π of H, and a measure μ on H, a conditional expectation operator T_π can be defined. It was shown in [1] that the net (T_π) directed by refinement does not always converge to T in the operator norm. Conditions under which this convergence does occur are discussed herein.

Throughout, X and Y are Banach spaces. The closed unit ball of X is denoted by B_X . We will use H for a compact Hausdorff space and C(H,X) for the space of continuous functions from H to X. An arbitrary σ -algebra of subsets of some universal space Ω will be represented by Σ , and when $\Omega = H$, we will use $\Sigma = \beta(H)$, the Borel sets of H, without further mention. An additive set function $m: \Sigma \to X$ will be called a vector measure, while by a measure we mean a countably additive set function $\mu: \Sigma \to [0, \infty)$.

For a vector measure $m: \Sigma \to X$, we define the variation of m as usual and the scalar semi-variation ||m|| of m as in [8]. If $m: \Sigma \to L(X,Y)$,

Copyright ©1996 Rocky Mountain Mathematics Consortium

Received by the editors on December 13, 1993, and in revised form on July 29, 1994.