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COUNTING POINTS ON CM ELLIPTIC CURVES
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To Wolfgang Schmidt on the occasion of his 60th birthday

1. Introduction. Let E be an elliptic curve in Weierstrass normal
form,

(1) E:y? =42® — gz — g3

where g2 and g3 are in a number field K. If %3 is a first degree prime of
K of norm p, and g2 and g3 are integral at J3, we can reduce the curve
(mod PB) to a curve over the field F,, of p elements

E:y2:4x37§2x7§3

and we can then ask how many points are there on E? It suffices to
know the Frobenius automorphism of £ which sends the point (z,y) on
E to the point (2P,yP) in order to answer this question. In the case of
curves with complex multiplication by an order in a complex quadratic
field k = Q(v/D) of discriminant D, we will show how this can be done.

Since k is always a subfield of K (v/D), it will be convenient for much
of the paper to assume that k is a subfield of K. To avoid excess
terminology, it will also be convenient to restrict ourselves to the case
where E has complex multiplication by the full ring of integers of k.
Let H be the Hilbert class field of k and H* the real subfield of H. The
degree [H : k] is h(k), the class-number of k. A curve with complex
multiplication by the full ring of integers of £ may be rescaled so as to
be defined over H. With correct rescalings, there are h(k) such curves,
all conjugate under automorphisms of the Galois group G(H/k).

In this paper we consider the case that (D,6) = 1 as this includes the
interesting class-number one fields that were the original motivation for
this paper. It is convenient to set
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