COUNTING POINTS ON CM ELLIPTIC CURVES

H.M. STARK

To Wolfgang Schmidt on the occasion of his 60th birthday

1. Introduction. Let E be an elliptic curve in Weierstrass normal form,

$$(1) E: y^2 = 4x^3 - g_2x - g_3$$

where g_2 and g_3 are in a number field K. If \mathfrak{P} is a first degree prime of K of norm p, and g_2 and g_3 are integral at \mathfrak{P} , we can reduce the curve (mod \mathfrak{P}) to a curve over the field \mathbf{F}_p of p elements

$$\overline{E}: y^2 = 4x^3 - \bar{g}_2 x - \bar{g}_3$$

and we can then ask how many points are there on \overline{E} ? It suffices to know the Frobenius automorphism of \overline{E} which sends the point (x,y) on \overline{E} to the point (x^p,y^p) in order to answer this question. In the case of curves with complex multiplication by an order in a complex quadratic field $k=\mathbf{Q}(\sqrt{D})$ of discriminant D, we will show how this can be done.

Since k is always a subfield of $K(\sqrt{D})$, it will be convenient for much of the paper to assume that k is a subfield of K. To avoid excess terminology, it will also be convenient to restrict ourselves to the case where E has complex multiplication by the full ring of integers of k. Let H be the Hilbert class field of k and k the real subfield of k. The degree k is k is k, the class-number of k. A curve with complex multiplication by the full ring of integers of k may be rescaled so as to be defined over k. With correct rescalings, there are k is such curves, all conjugate under automorphisms of the Galois group k.

In this paper we consider the case that (D,6) = 1 as this includes the interesting class-number one fields that were the original motivation for this paper. It is convenient to set

$$\theta = \frac{-3 + \sqrt{D}}{2},$$

Copyright ©1996 Rocky Mountain Mathematics Consortium

Received by the editors on August 4, 1995, and in revised form on December 18, 1995.