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1. Introduction and statement of results. Let G be a Zariski
connected reductive algebraic group defined over QQ such that the
abelian part of G(R) is compact. Let G°(R) be the topological identity
component and K be a maximal compact subgroup of G°(R). Suppose
that the quotient G°(R)/K has an invariant complex structure and
hence is isomorphic as a complex manifold to a bounded symmetric
domain D C C™ for an integer m > 1. A point z € D is called a special
point if it is the fixed point of a maximal torus 7" C G defined over Q
for which T'(R) is compact. Suppose that D is realized in C™ in such a
way that the special points are in DN Q. If T is a (neat) arithmetic
subgroup of G, there is a I'-invariant holomorphic map J = J(D,T)
of D into a projective space which induces a biregular isomorphism of
I'\D onto a complex quasi-projective variety V [1]. Moreover, Faltings
showed in [9] that the variety V can be defined over Q and that the
Q-structure of V' may be uniquely determined by requiring of (D, J, V)
that all special points z € D have Q-rational image point J(z) in
V. (For modulus varieties of abelian varieties of given PEL-type this
was shown in [22, 23]. Faltings’ approach of course bypasses abelian
varieties. For Hilbert modular surfaces, Faltings’ proof is written out
in [25, p. 82]. We call a triple (D, J,V) as above a normalized model
over Q for (G,T'). It seems reasonable to make the following:

Prediction. Let (D,J,V) be a normalized model over Q for (G,T)
with D € C™. Then z€ DNQ " and J(z) € V(Q) if and only if z is a
spectal point.
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