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COMMUTATIVE ALGEBRAIC GROUPS
AND REFINEMENTS OF THE
GELFOND-FELDMAN MEASURE

DEANNA M. CAVENY

ABSTRACT. The main theorem of this paper is a mea-
sure of algebraic independence for numbers associated with
a one-parameter subgroup of a commutative algebraic group
defined over a number field. Qualitative results in this setting
have been given by M. Waldschmidt, R. Tubbs and M. Ably,
who provided measures as well. We refine Ably’s quantita-
tive results, separating the degree and the height in the limit
case when the group contains a copy of the additive group
of complex numbers, i.e., G4. This new results provides sev-
eral interesting corollaries, in particular, a generalization of
G. Diaz’s refined Gelfond-Feldman measure to higher dimen-
sions and an improvement of Tubbs’ elliptic Gelfond-Feldman
measure.

1. Introduction and statement of result. We begin with
a review of the standard objects in this general setting. Although
our presentation is slightly different, this is essentially the setting of
[1] or [43]. Let G be a commutative algebraic group of dimension
d > 1 defined over a number field K. Let G, denote the additive
group of complex numbers and G,,, the multiplicative group of complex
numbers. We assume that G decomposes as

G =G% x GI x Gy

with dy € {0,1}, d; > 0 and G5 a commutative algebraic group of
dimension dy = d — dy — dy, defined over K, and with no linear factor.

We let ¢ : C — G(C) be a one-parameter subgroup, i.e., an analytic
homomorphism whose image is Zariski dense in G(C). Given complex
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