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THE SEQUENCE z/n AND ITS SUBSEQUENCES

R.C. BAKER AND G. HARMAN

1. Introduction. We begin by mentioning two problems which
seem to have no relation to each other.

Problem 1. A positive integer n is said to be sparsely totient if

¢(m) > ¢(n)

for all m > n, where ¢ is Fuler’s function. Find the smallest number
A such that, for all sparsely totient numbers n, we have

(1.1) n;‘z}zxp = O.((logn)***).

Here and subsequently, p denotes a prime number and € an arbitrary
positive number.

Now let K be an algebraic number field with degree d; the size of an
algebraic integer € in K is the maximum of the set of absolute values
of the d conjugates of #. Let ay,...,a, be n > 3 distinct algebraic
integers in K and p a nonzero algebraic integer in K.

Problem 2. Give a bound for the size of solutions X,Y of the Thue
equation
(X—a1Y)"'(X—a2Y) =K

in algebraic integers X,Y .

Such a bound can be expressed in terms of d and the heights of
ai,...,Qn, 4 and some algebraic integer generating K [1, Section 4.2].
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