THE SPECTRAL THEORY OF SECOND ORDER TWO-POINT DIFFERENTIAL OPERATORS IV. THE ASSOCIATED PROJECTIONS AND THE SUBSPACE $\mathcal{S}_{\infty}(L)$

JOHN LOCKER

ABSTRACT. This paper is the final part in a four-part series on the spectral theory of a two-point differential operator L in $L^2[0,1]$, where L is determined by a formal differential operator $l=-D^2+q$ and by independent boundary values $B_1,\ B_2$. For the family of projections $\{Q_{0k}\}_{k=1}^n\cup\{Q_k'\}_{k=k_0}^\infty\cup\{Q_k''\}_{k=k_0}^\infty$ which map $L^2[0,1]$ onto the generalized eigenspaces of L, it is determined whether or not the family of all finite sums of these projections is uniformly bounded in norm. Equivalently, for the subspace $\mathcal{S}_\infty(L)$ consisting of all $u\in L^2[0,1]$ with $u=\sum_{k=1}^n Q_{0k}u+\sum_{k=k_0}^\infty Q_k'u+\sum_{k=k_0}^\infty Q_k''u$, it is determined whether or not $\mathcal{S}_\infty(L)=\overline{\mathcal{S}_\infty(L)}=L^2[0,1]$. It is necessary to modify the projections and $\mathcal{S}_\infty(L)$ in the multiple eigenvalue case.

1. Introduction. In this paper we conclude our four-part series on the spectral theory of a linear second order two-point differential operator L in the complex Hilbert space $L^2[0,1]$. Let L be the differential operator in $L^2[0,1]$ defined by

$$\mathcal{D}(L) = \{ u \in H^2[0,1] \mid B_i(u) = 0, \ i = 1, 2 \},$$

$$Lu = lu,$$

where

$$l = -\left(\frac{d}{dt}\right)^2 + q(t)\left(\frac{d}{dt}\right)^0$$

is a second order formal differential operator on the interval [0,1] with $q \in C[0,1]$, B_1, B_2 are linearly independent boundary values given by

$$B_1(u) = a_1 u'(0) + b_1 u'(1) + a_0 u(0) + b_0 u(1),$$

$$B_2(u) = c_1 u'(0) + d_1 u'(1) + c_0 u(0) + d_0 u(1),$$

Received by the editors on September 15, 1994.

Copyright ©1996 Rocky Mountain Mathematics Consortium